بررسی اثرات برهم کنش شوری کلرید سدیم و اسید آسکوربیک بر برخی شاخصهای رشد، میزان پرولین و تغییرات یونهای سدیم و پتاسیم در دو رقم کلزا (RGS & Hayola 401)
الموضوعات :حسین لاری یزدی 1 , رضوان لک 2 , مسعود گودرزی 3
1 - گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد بروجرد
2 - گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد بروجرد
3 - گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد بروجرد
الکلمات المفتاحية: NaCl, پرولین, کلزا, شوری, شاخصهای رشد, اسید آسکوربیک, یونهای K+ و Na+,
ملخص المقالة :
در این بررسی پاسخهای فیزیولوژیکی دو رقم RGS و Hayola 401 از گیاه کلزا (Brassica napus L.) به تنش شوری مورد بررسی قرار گرفت. آزمایش ها بر روی گیاهان 20 روزه در محیط کشت هیدروپونیک (هوگلند) و با سه تکرار در شرایط یکسان آزمایشگاهی انجام گردید. در این بررسی میزان محتوای نسبی آب (RWC)، سرعت رشد نسبی (RGR)، سرعت ماده سازی خالص (NAR) و نسبت سطح برگ (LAR) در گیاهان با افزایش شوری کاهش یافت. همچنین تنش شوری، میزان انباشتگی پرولین و سدیم را درون بخش های مختلف گیاه افزایش داد، در حالی که میزان پتاسیم آنها به شدت کاهش یافت. افزودن آسکوربات 2/0 میلی مولار به غلظت های مختلف نمک توانست اثرات مخرب شوری را تعدیل کند، به طوری که با افزایش میزان فاکتورهای رشد توانست از انباشتگی پرولین و سدیم درون گیاهان کاسته و میزان پتاسیم را افزایش دهد. در بررسی ها نشان داده شد که رقم Hayola 401 نسبت به رقم RGS، مقاومت بیشتری در برابر شوری دارد.
آلیاری، ح.، شکاری، ف. (1379). دانههای روغنی زراعت و فیزیولوژی، انتشارات عمیدی، تبریز.
افیونی، ا.، مجتبی پور م.، نوربخش، ف. (1376). خاکهای شور و سدیمی، نشر ارکان اصفهان.
سرمدنیا، غ. (1372). اهمیت تنشهای محیطی در زراعت، مقالات کلیدی اولین کنگره زراعت و اصلاح نباتات ایران.
عبدالهیان، م. (1373). بررسی روند رشد چغندرقندر گزارش پژوهش سال 1382، بخش تحقیقات چغندرقند مرکز تحقیقات کشاورزی خراسان.
میرمحمد میبدی، ع.م.، قره یاضی، ب. (1381). جنبههای فیزیولوژیک و به نژادی تنش شوری گیاهان، انتشارات دانشگاه صنعتی اصفهان.
_||_Ajmal Khan*, M., Irwin A. Ungar and Allan M. Showalter, (2000), The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk, jornal of arid environments, 45, 73-84.
Al qurainy, F., (2007). Responses of bean and pea to vitamin C under salinity stress, Agriculture and biological sciences, 3(6): 714-722.
Arrigoni O and De Tullio MC. (2000). The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions. Journal of Plant Physiology 157: 481–488.
Ashraf, M., Nazir, N., MCNeilly, T., (2001). Comparative salt tolerance of amphidiplpid and diploid Brassica species, Plant sci., , 160:683-689.
Aziz, A., Martin –tanguy, J., Laher.F., (1999). Salt stress- induced praline accumulation and changes inb tyramin and polyamielevcls are linked to onic adjustments in tomato leaf discs, plant scince, 145: 83-91.
Cachorro. P., A. Ortiz., and Ceda. (1993). Growth, water and solute composition in phaseolus vulgaris L. under saline relation condition. Plant Sci. 95(1):23-29.
Cramer, G., He, (1992). Growth and mineral nutrition of six rapid – cyching Brassica species in response to sea water salinity, palnt and soil, 139: 185 – 294.
Cramer.G. R., A. Lauchi and V.S. Polito. (1985). Displacment of Ca2+ by Na+ from the plasmalemma of cells. A primary response to salt stress. Plant Physiol. 81: 207-211.
El- Hendawy. S., Yuncai. H., Schmid hater. U. (2005). Growth, ion content, gas exchange, and water relation of wheat genotypes differing in salt tolerances, Australian jornal of agricultural research, 56, 123 – 134.
Gary, BK., Gupta, IC. (1998). Physiology of salt tolerance of arid zone crops. IV. Rapeseed and Indian mustard, Current-Agriculture. 22(1-2):1-20.
Ghoulam, C., Foursy, A. and Fares, K., (2002). Effects of Salt Stress on growth, inorganic ions and Proline accumulation in relation to osmotic adjustment in five sugar beet Cultivars. Environ. Exp. Bot. 47,39-50.
Gibbon, Y., Sulpice, R., (2000). Larher to stress is the loss of chlorophlls and to the decrease of mitochondrial activity, Physiol. Plant. 110:469-476.
Gorham. J., Wyn jones, RG. Joppa, LR., (1987), chromosomal location of a K/Na discrimination character in the D genome of weat, Theoretical and applied genetic, 74, 584 – 588.
He, T., Cramer, G. R. (1992). Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity, Plant and Soil. 139:285-294.
Hernandez, J.A, Olmos, E., Corpas, F.J., Sevilla, F., Del Rio, L.A., (1995). Salt-induced oxidative stress in chloroplasts of pea plants, Plant Sci. 105:151-167.
Huang, C. (2005). increased sensitivity to salt stress in an ascrobate-deficient Arabidopsis mutant, Jornal of Experimental botany, 56 (422):3041-3049.
Noctor G, Foyer CH. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49, 249–279.
Rautenkranz AAF, Li L, Machler F, Martinoia E, Oertli JJ. (1994). Transport of ascorbic and dehydroscorbic acids scross protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves. Plant Physiology 106:187-193.
Romero-aranda, R., Soria, T. and Cuartero, J., (2001). Tomato Plant-water up take and Plant-water relationships under Soline growth Condition. Plant Sci, 160,265-272.
Sairam, R.K., G. C. Srivastava. (2002). Change in antioxidant activity in subcellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Journal of Experimental Botany.162:897-904.
Shalata A, Neumann PM. (2001). Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany 52, 2207-2211.
Smirnoff N and Wheeler GL. (2000), Ascorbic acid in Plants: biosynthesis and function. Critical Reviews in Plant Sciences 19:267-290.
Smirnoff N. (1996). The function and metabolism of ascorbic acid in plants. Annals of Botany 78:661-669.
Smirnoff N. (2000). Ascorbate biosynthesis and function in photoprotection. Philosphical Transcations of the Rayal Society of London, Series B, Biological Sciences 355, 1455-1464.
Wheeler, G., Jones. M., Smirnoff. N., (1998), The biosynthetic pathway of vitamin C in higher olants, Nature, 393:365-369.