پاسخ ژنوتیپهای رازیانه (Foeniculum vulgare Mill.) به پیش تیمار اسید سالیسیلیک تحت تنش شوری
الموضوعات :ساناز عدالت زاده اقدم 1 , محمود تورچی 2 , محمود زارعی 3
1 - گروه بیوتکنولوژی کشاورزی شاخه گیاهی، دانشکده کشاورزی، دانشگاه تبریز، ایران.
2 - گروه به نژادی و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.
3 - گروه شیمی کاربردی، دانشکده شیمی، دانشگاه تبریز، تبریز، ایران،
الکلمات المفتاحية: تنش شوری, اسید سالیسیلیک, پراکسید هیدروژن, رازیانه, هوگلند,
ملخص المقالة :
مطالعه حاضر به منظور ارزیابی واکنش ژنوتیپهای رازیانه (Foeniculum vulgare Mill.) به تنش شوری کلرید سدیم و اعمال اسید سالیسیلیک و جهت بررسی الگوی پروتئوم برگ، برای شناسایی سازوکار مسیرهای مولکولی موثر در تحمل تنش شوری، آزمایش گلخانهای به صورت فاکتوریل بر مبنای طرح بلوکهای کامل تصادفی با سه تکرار انجام گرفت. تیمار شوری از نوع کلرور سدیم در سه سطح صفر (شاهد)، 100 و 200 میلیمولار، اسید سالیسیلیک در دو سطح صفر (شاهد) و5/0 میلیمولار و پنج ژنوتیپ در نظر گرفته شد. صفات مورد مطالعه شامل وزن تروخشک اندام هوایی، وزن تر وخشک ریشه، ارتفاع بوته، طول ریشه، وزن تر و خشک کل گیاه، میزان کلروفیل a، b، کارتنوئیدها و کلروفیل کل، میزان سدیم و پتاسیم اندام هوایی، نسبت پتاسیم به سدیم اندام هوایی، میزان مالوندیآلدهید، پراکسیدهیدروژن و کربوهیدراتهای کل اندام هوایی بودند. تجزیه واریانس دادهها اختلاف معنیداری را برای اثرات اصلی و متقابل در صفات مورد مطالعه نشان داد. رتبهبندی ژنوتیپها به روش آروناچالام منجر به تعیین ژنوتیپ آلمان به عنوان متحملترین و مغان بهعنوان حساسترین ژنوتیپها گردید.
Abreu, I.A., Farinha, A. P., Negrão, S., Gonçalves, N., Fonseca, C., Rodrigues, M., Batista, R., Saibo, N. M. J. and Oliveira, M.M. (2013). Coping with abiotic stress: proteome changes for crop improvement. Journal of Proteomics. 93: 145-168.
Arunachalam, V. and Bandyopadhyay, A. (1984). A method to make decisions jointly on a number of dependent characters. Indian Journal of Genetics and Plant Breeding. 44: 419-424.
Ashraf, M. and McNeilly, T. (2004). Salinity Tolerance in Brassica Oilseeds. Critical Reviews in Plant Sciences. 23: 157-174.
Ashraf, M. (2014). Stress-induced changes in wheat grain composition and quality. Critical Reviews in Food Science and Nutrition. 54: 1576–1583.
Bandehhagh, A., Uliaie, E.D. and Salekdeh, G.H. (2013). Proteomic analysis of rapeseed (Brassica napus L.) seedling roots under salt stress. Annals of Biological Research. 4: 212-221.
Batista, V.C.V., Costa Pereiraa, I.M., Paula-Marinhoa, S.O., Canutob, K.M., Alves Pereirab, R.C., Rodrigues, T.H.S., Daloso, D.M., Gomes-Filho, E. and Carvalho, H.H. (2019). Salicylic acid modulates primary and volatile metabolites to alleviate salt stress induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany. 167: 103870.
Bennabi, F., Belkhodja, M., Boukraa, D., Bouhadda, Y. and Salmi, Z. (2013). The attitude of a saharan variety tadalaghte (Phaseolus vulgaris L.) put under stress of salinity. Advanced Studies in Biology. 5: 347-362.
Bhattacharjee, S. and A.K. Mukherjee. (2002). Salt stress induced cytosolute accumulation, antioxidant response and membrane deterioration in three rice cultivars during early germination. Seed Science and Technology. 30: 279-287
Bor, M., Zdemir, F. O. and Turkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science. 164: 77-84.
Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., Guidi, L. (2018). Mediterranean wild edible plants: weeds or “new functional crops”? Molecules. 23: 2299.
Chaparzadeh, N., Khavari-Nejad, R.A., Navari-Izzo, F. and Izzo, R. (2003). Water relations and ionic balance in Calendula officinalis L. under salinity conditions. Agrochimica, 47: 69-7
Chawla, S., Jain, S. and Jain, V. (2013). Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology. 22: 27-34.
Chinnusamy, V., Zhu, J. and Zhu, J.K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. Genetic Engineering. 27: 141-177
Del Rio, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M. and Barroso, J.B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology, 141: 330-335.
Dianat, M., Saharkhiz, M.J. and Tavasolian, I. (2016). Salicylic acid mitigates drought stress in Lippia Citriodora L.: effects on biochemical traits and essential oil yield. Biocatalysis and Agricultural Biotechnology. 8: 286–293.
Garc, N. and Manchanda, G. (2009). ROS generation in plants: Boon or bane? Plant Biosystem, 143: 81–96.
Gautam, S. and Singh, P.K. (2009). Salicylic acid_induced salinity tolerance in corn grown under NaCl stress. Acta Physiologia Plantarum. 31: 1185–1190
Gerona, M.E.B., Deocampo, M.P., Egdan, J.A., Ismail, A.M., Dionisio, M.L. (2019). Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage. Rice Science. 26(4): 207-219
Gharbi, E., Martínez, J.P., Benahmed, H., Dailly, H., Quinet, M. and Lutts, S. (2017). The salicylic acid analog 2,6-dichloroisonicotinic acid has specific impact on the response of the halophyte plant species Solanum chilense to salinity. Plant Growth Regulation. 82: 517–525.
Ghassemi-Golezani K. and Farhangi-Abriz S. (2018). Changes in oil accumulation and fatty acid composition of soybean seeds under salt stress in response to salicylic acid and jasmunic acid. Russian Journal of Plant Physiology. 2: 229-236.
Gohari, G., Safai, F., Panahirad, S., Akbari, A., Rasouli, F., Dadpour, M.Z. and Fotopoulos, V. (2020). Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere, 249: 126171
Gondim, F.A., Miranda, R.D.S., Gomes-Filho, E. and Prisco, J.T. (2013). Enhanced salt tolerance in maize plants induced by H2O2 leaf spraying is associated with improved gas exchange rather than with non-enzymatic antioxidant system. Theoritical and Experimental Plant Physiology, 25: 251–260
Gunes, A., Inal, A., Alpuslan, M., Fraslan, F., Guneri, E. and Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize grown under salinity. Journal of Plant Physiology. 164: 728-736.
Gupta, B. and Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics. 1-19.
Hajiaghaei Kamrani, M., Hosseini, H., Azam, R. Chegeni. (2013). Effect of salinity on the growth characteristics of canola (Brassica napus L.). Technical Journal of Engineering and Applied Sciences. 3: 2327-2333.
Hashmi, N., Masroor A., M., Moinuddin, K., Idrees, M. and Afta, T. (2012). Exogenous salicylic acid stimulates physiological and biochemical changes to improve growth, yield and active constituents of fennel essential oil. Plant Growth Regulation. 68:281–291
Hatami, E., Shokouhian, A.A., ghanbari, A.R. and Naseri, L.A. (2018). Alleviating salt stress in almond rootstocks using of humic acid. Scientia Horticulturae. 237: 296-302
Hoagland, D.R. and Arnon, D.I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station.
Ismail, A.M. and Horie, T. (2017). Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology. 68(1): 405–434.
Jaleel, C.A., Sankar, B., Sridharan, R. and Panneerselvam, R. (2009). Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turkish Journal of Biology. 32(2): 79–83
Kaiser, W.M. and Heber, U. (1981). Photosynthesis under osmotic stress: effect of high solute concentrations on the permeability properties of the chloroplast envelope and on activity of stroma enzymes. Planta, 153: 423–429.
Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K. and Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Sciences. 5: 709-725.
Katsuhara, M., Otsuka, T. and Ezaki, B. (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Science. 169: 369–373.
Khan, M.H. and Panda, S.K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum. 30: 81-89.
Khan, M.I.R., Iqbal, N., Masood, A., Per, T.S. and Khan, N.A. (2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior. 8: e26374.
Khodary, S.E.A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. International Journal of Agriculture and Biology. 6: 5–8.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method in Enzymology. 148: 350–382.
Liu, W., Zhang, Y., Yuan, X., Xuan, Y., Gao, Y. and Yan, Y. (2016). Exogenous Salicylic Acid Improves Salinity Tolerance of Nitraria tangutorum. Russian Journal of Plant Physiology. 63(1):132–142.
Loreto, F. and Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology. 127: 1781-1787.
Ma, X., Zheng, J., Zhang, X., Hu, Q. and Qian, R. (2017). Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Frontiers in Plant Science. 8: 600.
Mallahi, T., Saharkhiz, M.J. and Javanmardi, J. (2018). Salicylic acid changes morpho physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecologica Sinica. 351-355.
Misra, N. and Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science. 177: 181–189.
Nazar, R., Iqbal, N. and Khan, N.A. (2017). Salicylic Acid: A Multifaceted Hormone. pp. 145-163. Springer Singapore.
Nieves-cordones, M., Rodenas, R., Lara, A., Martínez, V. and Rubio, F. (2019). The combination of K+ deficiency with other environmental stresses: what is the outcome? Physiologia Plantarum, 165: 264–276
Palma, F., López-Gómez, M., Tejera, N.A. and Lluch, C. (2013). Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Science. 208: 75-82
Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety.60: 324-349.
Rather, M.A., Dar, B.A., Sofi, S.N., Bhat, B.A., and Qurishi, M.A. (2016). Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology and safety. Arabian Journal of Chemistry. 9 (2): S1574–S1583.
Rejiskova, A.B., Lenka, P., Eva, S. and Helena, L. (2007). The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. Journal of Plant Physiology. 164: 174–184.
Saddiq, M.S., Afzal, I., Basra, S.M.A., Ali, Z. and Ibrahim, A.M.H. (2017). Sodium exclusion is a reliable trait for the improvement of salinity tolerance in bread wheat. Archives of Agronomy and Soil Science. 64(2): 272–284
Sarvajeet, S.G. and Narendra, T. (2010). Reactive oxygen species and antioxidant machinery in a biotic stress tolerance in crop plants. Annual Review. Plant Physiology and Biochemistry. 3: 1-22.
Shafeiee, M. and Ehsanzadeh, P. (2019). Physiological and biochemical mechanisms of salinity tolerance in several fennel genotypes: Existence of clearly-expressed genotypic variations. Industrial Crops & Products. 132: 311–318.
Valentovic, P., Luxova, M., Kolarovic, L. and Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant, Soil and Environment. 52: 186-191
Yanik, F., Aytürk, Ö., Çetinbas-Genç, A. and Vardar, F. (2018). Salicylic acidinduced germination, biochemical and developmental alterations in rye (Secale cereale L.). Acta Botanica Croatica. 77(1): 45-50
Yazdanpanah, S., Baghizadeh, A. and Abbassi, F. (2011). The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. African Journal of Agricultural Research. 6: 798-807.
Yemm, W. and Willis, A.J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal. 57: 508–514.
_||_
Abreu, I.A., Farinha, A. P., Negrão, S., Gonçalves, N., Fonseca, C., Rodrigues, M., Batista, R., Saibo, N. M. J. and Oliveira, M.M. (2013). Coping with abiotic stress: proteome changes for crop improvement. Journal of Proteomics. 93: 145-168.
Arunachalam, V. and Bandyopadhyay, A. (1984). A method to make decisions jointly on a number of dependent characters. Indian Journal of Genetics and Plant Breeding. 44: 419-424.
Ashraf, M. and McNeilly, T. (2004). Salinity Tolerance in Brassica Oilseeds. Critical Reviews in Plant Sciences. 23: 157-174.
Ashraf, M. (2014). Stress-induced changes in wheat grain composition and quality. Critical Reviews in Food Science and Nutrition. 54: 1576–1583.
Bandehhagh, A., Uliaie, E.D. and Salekdeh, G.H. (2013). Proteomic analysis of rapeseed (Brassica napus L.) seedling roots under salt stress. Annals of Biological Research. 4: 212-221.
Batista, V.C.V., Costa Pereiraa, I.M., Paula-Marinhoa, S.O., Canutob, K.M., Alves Pereirab, R.C., Rodrigues, T.H.S., Daloso, D.M., Gomes-Filho, E. and Carvalho, H.H. (2019). Salicylic acid modulates primary and volatile metabolites to alleviate salt stress induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany. 167: 103870.
Bennabi, F., Belkhodja, M., Boukraa, D., Bouhadda, Y. and Salmi, Z. (2013). The attitude of a saharan variety tadalaghte (Phaseolus vulgaris L.) put under stress of salinity. Advanced Studies in Biology. 5: 347-362.
Bhattacharjee, S. and A.K. Mukherjee. (2002). Salt stress induced cytosolute accumulation, antioxidant response and membrane deterioration in three rice cultivars during early germination. Seed Science and Technology. 30: 279-287
Bor, M., Zdemir, F. O. and Turkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science. 164: 77-84.
Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., Guidi, L. (2018). Mediterranean wild edible plants: weeds or “new functional crops”? Molecules. 23: 2299.
Chaparzadeh, N., Khavari-Nejad, R.A., Navari-Izzo, F. and Izzo, R. (2003). Water relations and ionic balance in Calendula officinalis L. under salinity conditions. Agrochimica, 47: 69-7
Chawla, S., Jain, S. and Jain, V. (2013). Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology. 22: 27-34.
Chinnusamy, V., Zhu, J. and Zhu, J.K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. Genetic Engineering. 27: 141-177
Del Rio, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M. and Barroso, J.B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology, 141: 330-335.
Dianat, M., Saharkhiz, M.J. and Tavasolian, I. (2016). Salicylic acid mitigates drought stress in Lippia Citriodora L.: effects on biochemical traits and essential oil yield. Biocatalysis and Agricultural Biotechnology. 8: 286–293.
Garc, N. and Manchanda, G. (2009). ROS generation in plants: Boon or bane? Plant Biosystem, 143: 81–96.
Gautam, S. and Singh, P.K. (2009). Salicylic acid_induced salinity tolerance in corn grown under NaCl stress. Acta Physiologia Plantarum. 31: 1185–1190
Gerona, M.E.B., Deocampo, M.P., Egdan, J.A., Ismail, A.M., Dionisio, M.L. (2019). Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage. Rice Science. 26(4): 207-219
Gharbi, E., Martínez, J.P., Benahmed, H., Dailly, H., Quinet, M. and Lutts, S. (2017). The salicylic acid analog 2,6-dichloroisonicotinic acid has specific impact on the response of the halophyte plant species Solanum chilense to salinity. Plant Growth Regulation. 82: 517–525.
Ghassemi-Golezani K. and Farhangi-Abriz S. (2018). Changes in oil accumulation and fatty acid composition of soybean seeds under salt stress in response to salicylic acid and jasmunic acid. Russian Journal of Plant Physiology. 2: 229-236.
Gohari, G., Safai, F., Panahirad, S., Akbari, A., Rasouli, F., Dadpour, M.Z. and Fotopoulos, V. (2020). Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere, 249: 126171
Gondim, F.A., Miranda, R.D.S., Gomes-Filho, E. and Prisco, J.T. (2013). Enhanced salt tolerance in maize plants induced by H2O2 leaf spraying is associated with improved gas exchange rather than with non-enzymatic antioxidant system. Theoritical and Experimental Plant Physiology, 25: 251–260
Gunes, A., Inal, A., Alpuslan, M., Fraslan, F., Guneri, E. and Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize grown under salinity. Journal of Plant Physiology. 164: 728-736.
Gupta, B. and Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics. 1-19.
Hajiaghaei Kamrani, M., Hosseini, H., Azam, R. Chegeni. (2013). Effect of salinity on the growth characteristics of canola (Brassica napus L.). Technical Journal of Engineering and Applied Sciences. 3: 2327-2333.
Hashmi, N., Masroor A., M., Moinuddin, K., Idrees, M. and Afta, T. (2012). Exogenous salicylic acid stimulates physiological and biochemical changes to improve growth, yield and active constituents of fennel essential oil. Plant Growth Regulation. 68:281–291
Hatami, E., Shokouhian, A.A., ghanbari, A.R. and Naseri, L.A. (2018). Alleviating salt stress in almond rootstocks using of humic acid. Scientia Horticulturae. 237: 296-302
Hoagland, D.R. and Arnon, D.I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station.
Ismail, A.M. and Horie, T. (2017). Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology. 68(1): 405–434.
Jaleel, C.A., Sankar, B., Sridharan, R. and Panneerselvam, R. (2009). Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turkish Journal of Biology. 32(2): 79–83
Kaiser, W.M. and Heber, U. (1981). Photosynthesis under osmotic stress: effect of high solute concentrations on the permeability properties of the chloroplast envelope and on activity of stroma enzymes. Planta, 153: 423–429.
Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K. and Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Sciences. 5: 709-725.
Katsuhara, M., Otsuka, T. and Ezaki, B. (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Science. 169: 369–373.
Khan, M.H. and Panda, S.K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum. 30: 81-89.
Khan, M.I.R., Iqbal, N., Masood, A., Per, T.S. and Khan, N.A. (2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior. 8: e26374.
Khodary, S.E.A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. International Journal of Agriculture and Biology. 6: 5–8.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method in Enzymology. 148: 350–382.
Liu, W., Zhang, Y., Yuan, X., Xuan, Y., Gao, Y. and Yan, Y. (2016). Exogenous Salicylic Acid Improves Salinity Tolerance of Nitraria tangutorum. Russian Journal of Plant Physiology. 63(1):132–142.
Loreto, F. and Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology. 127: 1781-1787.
Ma, X., Zheng, J., Zhang, X., Hu, Q. and Qian, R. (2017). Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Frontiers in Plant Science. 8: 600.
Mallahi, T., Saharkhiz, M.J. and Javanmardi, J. (2018). Salicylic acid changes morpho physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecologica Sinica. 351-355.
Misra, N. and Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science. 177: 181–189.
Nazar, R., Iqbal, N. and Khan, N.A. (2017). Salicylic Acid: A Multifaceted Hormone. pp. 145-163. Springer Singapore.
Nieves-cordones, M., Rodenas, R., Lara, A., Martínez, V. and Rubio, F. (2019). The combination of K+ deficiency with other environmental stresses: what is the outcome? Physiologia Plantarum, 165: 264–276
Palma, F., López-Gómez, M., Tejera, N.A. and Lluch, C. (2013). Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Science. 208: 75-82
Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety.60: 324-349.
Rather, M.A., Dar, B.A., Sofi, S.N., Bhat, B.A., and Qurishi, M.A. (2016). Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology and safety. Arabian Journal of Chemistry. 9 (2): S1574–S1583.
Rejiskova, A.B., Lenka, P., Eva, S. and Helena, L. (2007). The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. Journal of Plant Physiology. 164: 174–184.
Saddiq, M.S., Afzal, I., Basra, S.M.A., Ali, Z. and Ibrahim, A.M.H. (2017). Sodium exclusion is a reliable trait for the improvement of salinity tolerance in bread wheat. Archives of Agronomy and Soil Science. 64(2): 272–284
Sarvajeet, S.G. and Narendra, T. (2010). Reactive oxygen species and antioxidant machinery in a biotic stress tolerance in crop plants. Annual Review. Plant Physiology and Biochemistry. 3: 1-22.
Shafeiee, M. and Ehsanzadeh, P. (2019). Physiological and biochemical mechanisms of salinity tolerance in several fennel genotypes: Existence of clearly-expressed genotypic variations. Industrial Crops & Products. 132: 311–318.
Valentovic, P., Luxova, M., Kolarovic, L. and Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant, Soil and Environment. 52: 186-191
Yanik, F., Aytürk, Ö., Çetinbas-Genç, A. and Vardar, F. (2018). Salicylic acidinduced germination, biochemical and developmental alterations in rye (Secale cereale L.). Acta Botanica Croatica. 77(1): 45-50
Yazdanpanah, S., Baghizadeh, A. and Abbassi, F. (2011). The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. African Journal of Agricultural Research. 6: 798-807.
Yemm, W. and Willis, A.J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal. 57: 508–514.