ارزیابی صفات بیوشیمیای و فیزیولوژیک لاینهای S6 ذرت (Zea mays L.) در شرایط نرمال و کمبود آب و بررسی روابط خویشاوندی آنها با تجزیه خوشهای
الموضوعات :
1 - استادیار اصلاح نباتات، بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش گشاورزی و منابع طبیعی کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه.، ایران.
2 - استادیار، گروه بیوتکنولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی
الکلمات المفتاحية: تنش خشکی, پرولین, ذرت, قندهای محلول, تجزیه خوشهای,
ملخص المقالة :
بهمنظور بررسی واکنش 15 لاین S6 ذرت به تنش خشکی، آزمایشی به صورت کرتهای خرد شده بر پایه طرح بلوکهای کامل تصادفی با سه تکرار در سال 1394 در مزرعه تحقیقاتی دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان اجرا گردید. در این مطالعه فاکتور اصلی تنش در دو سطح (نرمال با دور آبیاری 5 روز و تنش کم آبیاری با دور آبیاری 10 روز) و فاکتور فرعی لاین ذرت در 15 سطح بود. نتایج نشان داد که بین سطوح تنش و لاینها از نظر تمام صفات مورد بررسی (کلروفیلa، کلروفیلb، کلروفیل کل، کاروتنوئیدها، قندهای احیاءکننده، محتوای پروتئین و پرولین) اختلاف معنیداری وجود داشت. مقایسه میانگین لاینها نشان داد که لاین 9، 3 و 5 بیشترین مقدار پرولین را در شرایط تنش خشکی دارا بودند. کمترین ضریب تغییرات فنوتیپی مربوط به صفت محتوای پروتئین کل و بیشترین آن مربوط به پرولین بود و بقیه صفات در این بین قرار داشتند. تجزیه خوشهای لاینهای مورد مطالعه را در شرایط نرمال، تنش خشکی و میانگین هر دو شرایط به ترتیب در چهار، پنج و شش گروه قرار داد و درصد شباهت گروهبندی آنها با یکدیگر بالا بود. براساس نتایج تجزیه خوشهای و مقایسات میانگین، لاینهایی که فاصله ژنتیکی زیادی با هم داشتند در یک گروه قرار گرفتند. به این ترتیب سه گروه که هر کدام پنج لاین داشتند، حاصل شد تا در برنامهریزی پروژههای اصلاحی و برنامههای دورگهگیری مورد استفاده قرار گیرند. همچنین لاین 9 میانگین بالایی برای اکثر صفات مورد مطالعه در هر دو شرایط نشان داد و میتواند بهعنوان لاین امیدبخش در آزمایشات بعدی مورد توجه قرار گیرد.
References
Anjum, S.A., Xie, X.-y., Wang, L.-c., Saleem, M.F., Man, C. and Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6 (9): 2026-2032.
Aslam, M., Khan, I.A., Saleem, M. and Ali, Z. (2006). Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pakistan Journal of Botany, 38 (5): 1571-1579.
Avramova, V., Nagel, K.A., AbdElgawad, H., Bustos, D., DuPlessis, M., Fiorani, F. and Beemster, G.T. (2016). Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67 (8): 2453-2466.
Basu, S., Ramegowda, V., Kumar, A. and Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5: F1000 Faculty Rev-1554, 10 pages.
Bates, L., Waldren, R. and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39 (1): 205-207.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72 (1-2): 248-254.
Bruce, W.B., Edmeades, G.O. and Barker, T.C. (2002). Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany, 53 (366): 13-25.
Cakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89 (1): 1-16.
Chimungu, J.G., Brown, K.M. and Lynch, J.P. (2014). Large root cortical cell size improves drought tolerance in maize. Plant Physiology, 166 (4): 2166-2178.
Hammer, Ø., Harper, D. and Ryan, P. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1): 9pp.
Iqbal, J., Shinwari, Z.K. and Rabbani, M.A. (2015a). Maize (Zea mays L.) germplasm agro-morphological characterization based on descriptive, cluster and principal component analysis. Pakistan Journal of Botany, 47: 255-264.
Iqbal, J., Shinwari, Z.K., Rabbani, M.A. and Khan, S.A. (2015b). Genetic divergence in maize (Zea mays L.) germplasm using quantitative and qualitative traits. Pakistan Journal of Botany, 47: 227-238.
Kresović, B., Gajić, B., Tapanarova, A. and Dugalić, G. (2018). How irrigation water affects the yield and nutritional quality of maize (Zea mays L.) in a temperate climate. Polish Journal of Environmental Studies, 27 (3): 1123-1131.
Kumar, A., Kumari, J., Rana, J., Chaudhary, D., Kumar, R., Singh, H., Singh, T. and Dutta, M. (2015). Diversity among maize landraces in North West Himalayan region of India assessed by agro-morphological and quality traits. Indian Journal of Genetics and Plant Breeding, 75 (2): 188-195.
Kumar, S., Sachdeva, S., Bhat, K. and Vats, S. (2018). Plant Responses to Drought Stress: Physiological, Biochemical and Molecular Basis. In: Biotic and Abiotic Stress Tolerance in Plants. pp. 1-25. Springer,
Löffler, C.M., Wei, J., Fast, T., Gogerty, J., Langton, S., Bergman, M., Merrill, B. and Cooper, M. (2005). Classification of maize environments using crop simulation and geographic information systems. Crop Science, 45 (5): 1708-1716.
Madadi, E. and Fallah, S. (2017). Effects of jasmonic acid and humic acid to mitigate drought stress effect during pollination of forage maize. Journal of Water and Soil, 31 (5): 1396-1408 (In Persian with English Abstract).
Nasrollahzade Asl, V., Shiri, M.R., Moharramnejad, S., Yusefi, M. and Baghbani, F. (2017). Effect of drought tension on agronomy and biochemical traits of three maize hybrids (Zea mays L.). Crop Physiology Journal, 8 (32): 45-60 (In Persian with English Abstract).
Ragh ara, H. and Moosavi, S.G.R. (2018). Effect of water deficit stress and application of humic and salicylic acid on physiological traits, yield and yield components of corn. Journal of Iranian Plant Ecophysiological Research, 13 (50): 88-101 (In Persian with English Abstract).
Rauf, S., Al-Khayri, J.M., Zaharieva, M., Monneveux, P. and Khalil, F. (2016). Breeding strategies to enhance drought tolerance in crops. In: Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. pp. 397-445. Al-Khayri, J.M., Jain, S.M. and Johnson, D.V. (eds.), Springer, Cham, Switzerland,
SAS-Institute-Inc (2014). Base SAS 9.4 Procedures Guide: Statistical Procedures, Third Edition. SAS Institute Inc., Cary, NC, USA.
Seghatoleslami, M., Kafi, M. and Majidi, E. (2008). Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pakistan Journal of Botany, 40 (4): 1427-1432.
Setimela, P., Chitalu, Z., Jonazi, J., Mambo, A., Hodson, D. and Bänziger, M. (2005). Environmental classification of maize-testing sites in the SADC region and its implication for collaborative maize breeding strategies in the subcontinent. Euphytica, 145 (1-2): 123-132.
Somogyi, M. (1952). Notes on sugar determination. Journal of Biological Chemistry, 195: 19-23.
Sudhakar, P., Latha, P. and Reddy, P. (2016). Phenotyping Crop Plants for Physiological and Biochemical Traits. Academic Press.
Yordanov, I., Velikova, V. and Tsonev, T. (2000). Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38 (2): 171-186.
York, L.M., Nord, E. and Lynch, J. (2013). Integration of root phenes for soil resource acquisition. Frontiers in Plant Science, 4: Article 355- 15 pages.
Yusefi, M., Nasrollahzade asl, V. and Moharramnejad, S. (2017). Grain yield, chlorophyll content, osmolyte accumulation, total phenolics and catalase activity in maize (Zea mays L.) under drought stress. Journal of Iranian Plant Ecophysiological Research, 12 (46): 1-14 (In Persian with English Abstract).
_||_
References
Anjum, S.A., Xie, X.-y., Wang, L.-c., Saleem, M.F., Man, C. and Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6 (9): 2026-2032.
Aslam, M., Khan, I.A., Saleem, M. and Ali, Z. (2006). Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pakistan Journal of Botany, 38 (5): 1571-1579.
Avramova, V., Nagel, K.A., AbdElgawad, H., Bustos, D., DuPlessis, M., Fiorani, F. and Beemster, G.T. (2016). Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67 (8): 2453-2466.
Basu, S., Ramegowda, V., Kumar, A. and Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5: F1000 Faculty Rev-1554, 10 pages.
Bates, L., Waldren, R. and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39 (1): 205-207.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72 (1-2): 248-254.
Bruce, W.B., Edmeades, G.O. and Barker, T.C. (2002). Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany, 53 (366): 13-25.
Cakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89 (1): 1-16.
Chimungu, J.G., Brown, K.M. and Lynch, J.P. (2014). Large root cortical cell size improves drought tolerance in maize. Plant Physiology, 166 (4): 2166-2178.
Hammer, Ø., Harper, D. and Ryan, P. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1): 9pp.
Iqbal, J., Shinwari, Z.K. and Rabbani, M.A. (2015a). Maize (Zea mays L.) germplasm agro-morphological characterization based on descriptive, cluster and principal component analysis. Pakistan Journal of Botany, 47: 255-264.
Iqbal, J., Shinwari, Z.K., Rabbani, M.A. and Khan, S.A. (2015b). Genetic divergence in maize (Zea mays L.) germplasm using quantitative and qualitative traits. Pakistan Journal of Botany, 47: 227-238.
Kresović, B., Gajić, B., Tapanarova, A. and Dugalić, G. (2018). How irrigation water affects the yield and nutritional quality of maize (Zea mays L.) in a temperate climate. Polish Journal of Environmental Studies, 27 (3): 1123-1131.
Kumar, A., Kumari, J., Rana, J., Chaudhary, D., Kumar, R., Singh, H., Singh, T. and Dutta, M. (2015). Diversity among maize landraces in North West Himalayan region of India assessed by agro-morphological and quality traits. Indian Journal of Genetics and Plant Breeding, 75 (2): 188-195.
Kumar, S., Sachdeva, S., Bhat, K. and Vats, S. (2018). Plant Responses to Drought Stress: Physiological, Biochemical and Molecular Basis. In: Biotic and Abiotic Stress Tolerance in Plants. pp. 1-25. Springer,
Löffler, C.M., Wei, J., Fast, T., Gogerty, J., Langton, S., Bergman, M., Merrill, B. and Cooper, M. (2005). Classification of maize environments using crop simulation and geographic information systems. Crop Science, 45 (5): 1708-1716.
Madadi, E. and Fallah, S. (2017). Effects of jasmonic acid and humic acid to mitigate drought stress effect during pollination of forage maize. Journal of Water and Soil, 31 (5): 1396-1408 (In Persian with English Abstract).
Nasrollahzade Asl, V., Shiri, M.R., Moharramnejad, S., Yusefi, M. and Baghbani, F. (2017). Effect of drought tension on agronomy and biochemical traits of three maize hybrids (Zea mays L.). Crop Physiology Journal, 8 (32): 45-60 (In Persian with English Abstract).
Ragh ara, H. and Moosavi, S.G.R. (2018). Effect of water deficit stress and application of humic and salicylic acid on physiological traits, yield and yield components of corn. Journal of Iranian Plant Ecophysiological Research, 13 (50): 88-101 (In Persian with English Abstract).
Rauf, S., Al-Khayri, J.M., Zaharieva, M., Monneveux, P. and Khalil, F. (2016). Breeding strategies to enhance drought tolerance in crops. In: Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. pp. 397-445. Al-Khayri, J.M., Jain, S.M. and Johnson, D.V. (eds.), Springer, Cham, Switzerland,
SAS-Institute-Inc (2014). Base SAS 9.4 Procedures Guide: Statistical Procedures, Third Edition. SAS Institute Inc., Cary, NC, USA.
Seghatoleslami, M., Kafi, M. and Majidi, E. (2008). Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pakistan Journal of Botany, 40 (4): 1427-1432.
Setimela, P., Chitalu, Z., Jonazi, J., Mambo, A., Hodson, D. and Bänziger, M. (2005). Environmental classification of maize-testing sites in the SADC region and its implication for collaborative maize breeding strategies in the subcontinent. Euphytica, 145 (1-2): 123-132.
Somogyi, M. (1952). Notes on sugar determination. Journal of Biological Chemistry, 195: 19-23.
Sudhakar, P., Latha, P. and Reddy, P. (2016). Phenotyping Crop Plants for Physiological and Biochemical Traits. Academic Press.
Yordanov, I., Velikova, V. and Tsonev, T. (2000). Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38 (2): 171-186.
York, L.M., Nord, E. and Lynch, J. (2013). Integration of root phenes for soil resource acquisition. Frontiers in Plant Science, 4: Article 355- 15 pages.
Yusefi, M., Nasrollahzade asl, V. and Moharramnejad, S. (2017). Grain yield, chlorophyll content, osmolyte accumulation, total phenolics and catalase activity in maize (Zea mays L.) under drought stress. Journal of Iranian Plant Ecophysiological Research, 12 (46): 1-14 (In Persian with English Abstract).