بررسی اثرات رزین اکریلیک حاوی نانو ذرات رس و مالچ گیاهی بر خصوصیات مرفولوژی گونه پسته (Pistacia vera L.) در مراتع گورپان اسفراین
الموضوعات :
پریا کمالی
1
,
غلامعلی حشمتی
2
,
عادل سپهری
3
,
شروین احمدی
4
1 - دانشگاه کشاورزی و منابع طبیعی گرکان
2 - استاد دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 - استاد دانشگاه علوم کشاورزی و منابع طبیعی گرگان
4 - استادیار پژوهشکده شیمی و پلیمر ایران
تاريخ الإرسال : 16 الجمعة , شعبان, 1438
تاريخ التأكيد : 08 الأربعاء , ذو الحجة, 1438
تاريخ الإصدار : 01 الأربعاء , ذو الحجة, 1438
الکلمات المفتاحية:
پسته Pistacia vera,
رزین اکریلیک,
مالچ گیاهی,
نانو ذرات رس,
ملخص المقالة :
مسئله کم آبی وپیچیدگی این فرآیند، یکی مشکلات شناخته شده کشور است. از طرفی کشت گونههای مثمر در قالب طرح مرتعداری برای عشایر اسکان داده شده میتواند یکی از راه حلهای تامین معیشت این دسته از بهرهبرداران و کاهش تعداد دام آنها در عرصههای منابع طبیعی باشد. در این تحقیق اثر نانوکامپوزیتهای پلیمری و مالچ گیاهی بر تغییرات برخی خصوصیات مورفولوژی گونه پسته (Pistaciavera L.) صورت گرفت. تیمارهای اعمال شده عبارتند از تیمارهای شاهد، مالچ گیاهی (کاه و کلش گندم دیم) و نانوکامپوزیت پلیمری 0%، 1% و 3% نانو ذرات رس– رزین اکریلیک که با 10 تکرار برای هر تیمار در نظر گرفته شد. خصوصیات مرفولوژی گیاه پسته (ارتفاع گیاه، مساحت تاج پوشش و تعداد برگ) بعد از یک سال از مرحله کشت اندازهگیری شد. آنالیز دادهها با استفاده از تجزیه واریانس یک طرفه و آزمون دانکن صورت گرفت. نتایج نشان داد بین تیمار کاه و کلش با شاهد هیچ تفاوت معنیداری (در سطح 5%) مشاهده نشد اما سایر تیمارهای مورد بررسی (در سطح 1% ) با تیمار شاهد دارای اختلاف معنیدار بودند که بین تمامی تیمارهای اعمال شده با تیمار 3 % نانو ذرات رس– رزین اکریلیک اختلاف معنیدار وجود داشت ( در سطح 1% ). بطوری که ارتفاع گیاه، مساحت تاج پوشش و تعداد برگها در تیمار 3 % نانو ذرات رس– رزین اکریلیک بیشتر از سایر تیمارها بود.
المصادر:
Abd El-Kader, A., S. Shaaban,& M.S. Abd El-Fattah, 2010. Effect of irrigation levels and organic compost on okra plants (Abelmoschus esculentus l.) grown in sandy calcareous soil. Agriculture and Biology Journal of North America 1(3):225-231
Agaba, H. L., G. Baguma, G.F.O. Esegu, J. Obua, G.D. Kabasa,& A. Hüttermann. 2010. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions CLEAN – soil. Air. Water 38(4):328-335.
Arora, S., P. Sharma, S. Kumar, R. Nayan, P.K. Khanna,& M.G.H. Zaidi, 2012. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regular 66:303–310.
Brunner, G. 2014. Reactions of synthetic polymers with water. Supercritical Fluid Science and Technology 5:511-523.
Cossins, D., 2014. Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemicalsensors., The scientist, news & opinion, March 16. http://www.the-scientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-Augment-Plant-Functions.
DeRosa, M.C., C. Monreal, M. Schnitzer, R. Walsh,& Y. Sultan, 2010. Nanotechnology in fertilizers. Nat Nanotechnology 5:91-99.
Galbraith, D.W., 2007. Nano biotechnology: silica breaks through in plants. Nat Nanotechnology 2:272-273.
Giraldo, J.P., M.P. Landry, S.M. Faltermeier, T.P. McNicholas, N.M. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J.A. Brew,& M.S. Strano, 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 2012-2035,
Gopinath, K., S. Gowri, V. Karthika,& A. Arumugam, 2014. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. Journal of Nanostructure Chemistry 4:1-11.
Gruyer, N., M. Dorais, C. Bastien, N. Dassylva,& G. Triffault-Bouchet, 2013.Interaction between sliver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory– greensys", Jeju, Korea, pp. 6–11,
Jaberzadeh, A., P. Moaveni, H.R.T. Moghadam,& H. Zahedi, 2013. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not botanical horti agrobotanici.41: 201–207.
Khadem, K., M. Jangjou,& M. Mesdaghi, 1998. The best location of the plants and the most suitable criteria ChalhHay size or squeeze in the Kavir Mohammadabad Qayan arches" Proceedings of the Third International Conference against desertification and sustainable development TalabHay deserts in Iran, Arak, 98-104.
Khalilpour, A.,H. Tabatabaei, R. Sharifian, B. Roshan, S.D. Alikhani,& M. Fatahi, 2005. Super absorbent effect on increasing water use efficiency in pine seedlings, Proceedings of the Second National Conference of watershed management and soil and water resources management, martyr. Bahonar University of Kerman 1617-1609 .
Khodakovskaya,M.,E. Dervishi, M. Meena , Y. Xu , L. Zhongrui , W. Fumiya,&A.S. Biris, 2009. Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano 3(10):3221-3227.
Khodakovskaya, M.V., K. de Silva, A.S. Biris, E. Dervishi,& H. Villagarcia, 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128-2135.
Kumar, V., P. Guleria, V, Kumar,& S.K. Yadav, 2013. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468,
Lahiani, M.H., E. Dervishi, J. Chen, Z. Nima, A. Gaume, A.S. Biris,& M.V. Khodakovskaya, 2013. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Apply Mater Interfaces 5:7965-7973.
Liu, Sh. Wu, M. Ven, A. Molenaar,& J. Besamusca, 2010. Characterization of organic surfactant on Mont morillonite nanoclay to be used in Bitumen. Journal of Materials in Civil Engineering22(8):794-799.
Ma, C., S. Chhikara, B. Xing, C. Musante, J.C. White,& O.P. Dhankher, 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry Enginaring 1(7):768-778.
Mack, M.C. C. M.Mack,& D. Antonio, 1998. Impacts of biological invasions on disturbance regimes, Trends in Ecology and Evolution 13:195-198,.
Mahmoodzadeh, H., M. Nabavi,& H. Kashefi, 2013. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of ornamental hortic plants 3:25-32.
Mishra, V., R.K. Mishra, A. Dikshit,& A.C. Pandey, 2014. Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Biological Techniques 1:159-180.
Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida,& D.S. Kumar, 2010. Nanoparticulate material delivery to plants. Plant Science 179:154–163.
Norton, J.B., T.A. Monaco, J.M. Norton, D.A. Johnson,& T.A. Jones. 2004. Cheatgrass invasion alters soil morphology and organic mater dynamics in big sagebrush–steppe. Rangelands 1:57–63.
Puoci, F.,F. Iemma, U.G. Spizzirri,& G. Cirillo, 2008. Polymer in Agriculture. American Journal of Agriculture and Biological Science 3(1):299-314.
Ranger, J., M. Colin-Belyrand,& C. Nys, 1995. Le cycle biogeochemical des elements majeure dens les ecosystems foresters. Etude Gestation Sds 2(2):119-134.
Safari-ned, M., F. Javid, M. Zad-Behtuyi,& Z. Marjani, 2013. Study of rice varieties yield and yield components response to iron nano composite apply in different growth stages. Journal of farming and Allied Sciences 2(8):638-642.
Salama, H.M.H., 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International research journal biotech 3(10): 190-197.
Satish Vitthalrao, B.K., C.D. Salunke,& R.B. Patil, 2011. Studies on amendment of different biopolymers in sandy loam and their effect on germination seedling growth of Gossypium herbaceum L. Applied biochemist biotechnol 163:780-791.
Scrinis, G.,& K. Lyons, 2007. The emerging nano-corporate paradigm: nanotechnology and thetransformation of nature, food and agri-food systems. International Journal of Societal Food Agriculture 15:22–44.
Sen, J.P., Prakash,& N. De, 2015. Nano- clay composite and phto-nanotechnologic : a new horizon to food security issue in Indian agriculture. Journal of Global Biosciences 4(5):2187-2198.
Shahid, S.A., A.Q. Ansar, A. Farooq, U. Inam, & R. Umer 2012. Effects of a Novel Poly (AA-co-AAm) /AlZnFe2O4/potassium Humate Superabsorbent Hydrogel Nanocomposite on Water Retention of Sandy Loam Soil. Wheat Seedling Growth Molecules 17(11):12587-12602.
Sharma, P., D. Bhatt, M.G. Zaidi, P.P. Saradhi, P.K. Khanna,& S. Arora, 2012. Silver nanoparticlemediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemical Biotechnology 167:2225-2233.
Siddiqui, M.H., M.H. Al-Whaibi & F. Mohammad, 2015. Nanotechnology and plant sciences. Nanoparticles and their impact on plants 978 p.
Siddiqui, M.H., &M.H. Al-Whaibi, 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill. Saudi Biology Sciences 21:13–17.
Simmons, A.M., C.K. Kousik,& A. Levi, 2004. Combining reflective mulch and host plant resistance for sweet potato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop protection 29:898-902.
Standnes, D.C.,& I. Skjevrak, 2014. Literature review of implemented polymer field projects. Journal Of Petroleum Science and Engineering 122:761-775.
Suriyaprabha, R., G. Karunakaran, R. Yuvakkumar, V. Rajendran,& N. Kannan, 2012. Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curry Nanosciences 8:902-908.
Syu, Y.Y., J.H. Hung, J.C. Chen,& H.W. Chuang, 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology Biochemistry 83: 57-64.
Torney, F,.B.G. Trewyn, V.S.Y. Lin.,& K. Wang, 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnology 2:295-300.
Wang, A., Y. Zheng & F. Peng, 2014. Thickness-controllable silica coating of CdTe QDs by reverse Microemulsion method for the application in the growth of rice. Journal of Spectroscopy., 5:409-435.
Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu,& P. Yang, 2006. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110(2):179–190.
Zhu, W., X. Zhang, D. Wang,& W. Lu, 2013. Experimental study on the conduction function of nano-hydroxyapati artificial bone. IET Micro & Nano Letters5(11):19-27.
_||_
Abd El-Kader, A., S. Shaaban,& M.S. Abd El-Fattah, 2010. Effect of irrigation levels and organic compost on okra plants (Abelmoschus esculentus l.) grown in sandy calcareous soil. Agriculture and Biology Journal of North America 1(3):225-231
Agaba, H. L., G. Baguma, G.F.O. Esegu, J. Obua, G.D. Kabasa,& A. Hüttermann. 2010. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions CLEAN – soil. Air. Water 38(4):328-335.
Arora, S., P. Sharma, S. Kumar, R. Nayan, P.K. Khanna,& M.G.H. Zaidi, 2012. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regular 66:303–310.
Brunner, G. 2014. Reactions of synthetic polymers with water. Supercritical Fluid Science and Technology 5:511-523.
Cossins, D., 2014. Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemicalsensors., The scientist, news & opinion, March 16. http://www.the-scientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-Augment-Plant-Functions.
DeRosa, M.C., C. Monreal, M. Schnitzer, R. Walsh,& Y. Sultan, 2010. Nanotechnology in fertilizers. Nat Nanotechnology 5:91-99.
Galbraith, D.W., 2007. Nano biotechnology: silica breaks through in plants. Nat Nanotechnology 2:272-273.
Giraldo, J.P., M.P. Landry, S.M. Faltermeier, T.P. McNicholas, N.M. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J.A. Brew,& M.S. Strano, 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 2012-2035,
Gopinath, K., S. Gowri, V. Karthika,& A. Arumugam, 2014. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. Journal of Nanostructure Chemistry 4:1-11.
Gruyer, N., M. Dorais, C. Bastien, N. Dassylva,& G. Triffault-Bouchet, 2013.Interaction between sliver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory– greensys", Jeju, Korea, pp. 6–11,
Jaberzadeh, A., P. Moaveni, H.R.T. Moghadam,& H. Zahedi, 2013. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not botanical horti agrobotanici.41: 201–207.
Khadem, K., M. Jangjou,& M. Mesdaghi, 1998. The best location of the plants and the most suitable criteria ChalhHay size or squeeze in the Kavir Mohammadabad Qayan arches" Proceedings of the Third International Conference against desertification and sustainable development TalabHay deserts in Iran, Arak, 98-104.
Khalilpour, A.,H. Tabatabaei, R. Sharifian, B. Roshan, S.D. Alikhani,& M. Fatahi, 2005. Super absorbent effect on increasing water use efficiency in pine seedlings, Proceedings of the Second National Conference of watershed management and soil and water resources management, martyr. Bahonar University of Kerman 1617-1609 .
Khodakovskaya,M.,E. Dervishi, M. Meena , Y. Xu , L. Zhongrui , W. Fumiya,&A.S. Biris, 2009. Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano 3(10):3221-3227.
Khodakovskaya, M.V., K. de Silva, A.S. Biris, E. Dervishi,& H. Villagarcia, 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128-2135.
Kumar, V., P. Guleria, V, Kumar,& S.K. Yadav, 2013. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468,
Lahiani, M.H., E. Dervishi, J. Chen, Z. Nima, A. Gaume, A.S. Biris,& M.V. Khodakovskaya, 2013. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Apply Mater Interfaces 5:7965-7973.
Liu, Sh. Wu, M. Ven, A. Molenaar,& J. Besamusca, 2010. Characterization of organic surfactant on Mont morillonite nanoclay to be used in Bitumen. Journal of Materials in Civil Engineering22(8):794-799.
Ma, C., S. Chhikara, B. Xing, C. Musante, J.C. White,& O.P. Dhankher, 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry Enginaring 1(7):768-778.
Mack, M.C. C. M.Mack,& D. Antonio, 1998. Impacts of biological invasions on disturbance regimes, Trends in Ecology and Evolution 13:195-198,.
Mahmoodzadeh, H., M. Nabavi,& H. Kashefi, 2013. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of ornamental hortic plants 3:25-32.
Mishra, V., R.K. Mishra, A. Dikshit,& A.C. Pandey, 2014. Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Biological Techniques 1:159-180.
Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida,& D.S. Kumar, 2010. Nanoparticulate material delivery to plants. Plant Science 179:154–163.
Norton, J.B., T.A. Monaco, J.M. Norton, D.A. Johnson,& T.A. Jones. 2004. Cheatgrass invasion alters soil morphology and organic mater dynamics in big sagebrush–steppe. Rangelands 1:57–63.
Puoci, F.,F. Iemma, U.G. Spizzirri,& G. Cirillo, 2008. Polymer in Agriculture. American Journal of Agriculture and Biological Science 3(1):299-314.
Ranger, J., M. Colin-Belyrand,& C. Nys, 1995. Le cycle biogeochemical des elements majeure dens les ecosystems foresters. Etude Gestation Sds 2(2):119-134.
Safari-ned, M., F. Javid, M. Zad-Behtuyi,& Z. Marjani, 2013. Study of rice varieties yield and yield components response to iron nano composite apply in different growth stages. Journal of farming and Allied Sciences 2(8):638-642.
Salama, H.M.H., 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International research journal biotech 3(10): 190-197.
Satish Vitthalrao, B.K., C.D. Salunke,& R.B. Patil, 2011. Studies on amendment of different biopolymers in sandy loam and their effect on germination seedling growth of Gossypium herbaceum L. Applied biochemist biotechnol 163:780-791.
Scrinis, G.,& K. Lyons, 2007. The emerging nano-corporate paradigm: nanotechnology and thetransformation of nature, food and agri-food systems. International Journal of Societal Food Agriculture 15:22–44.
Sen, J.P., Prakash,& N. De, 2015. Nano- clay composite and phto-nanotechnologic : a new horizon to food security issue in Indian agriculture. Journal of Global Biosciences 4(5):2187-2198.
Shahid, S.A., A.Q. Ansar, A. Farooq, U. Inam, & R. Umer 2012. Effects of a Novel Poly (AA-co-AAm) /AlZnFe2O4/potassium Humate Superabsorbent Hydrogel Nanocomposite on Water Retention of Sandy Loam Soil. Wheat Seedling Growth Molecules 17(11):12587-12602.
Sharma, P., D. Bhatt, M.G. Zaidi, P.P. Saradhi, P.K. Khanna,& S. Arora, 2012. Silver nanoparticlemediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemical Biotechnology 167:2225-2233.
Siddiqui, M.H., M.H. Al-Whaibi & F. Mohammad, 2015. Nanotechnology and plant sciences. Nanoparticles and their impact on plants 978 p.
Siddiqui, M.H., &M.H. Al-Whaibi, 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill. Saudi Biology Sciences 21:13–17.
Simmons, A.M., C.K. Kousik,& A. Levi, 2004. Combining reflective mulch and host plant resistance for sweet potato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop protection 29:898-902.
Standnes, D.C.,& I. Skjevrak, 2014. Literature review of implemented polymer field projects. Journal Of Petroleum Science and Engineering 122:761-775.
Suriyaprabha, R., G. Karunakaran, R. Yuvakkumar, V. Rajendran,& N. Kannan, 2012. Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curry Nanosciences 8:902-908.
Syu, Y.Y., J.H. Hung, J.C. Chen,& H.W. Chuang, 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology Biochemistry 83: 57-64.
Torney, F,.B.G. Trewyn, V.S.Y. Lin.,& K. Wang, 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnology 2:295-300.
Wang, A., Y. Zheng & F. Peng, 2014. Thickness-controllable silica coating of CdTe QDs by reverse Microemulsion method for the application in the growth of rice. Journal of Spectroscopy., 5:409-435.
Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu,& P. Yang, 2006. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110(2):179–190.
Zhu, W., X. Zhang, D. Wang,& W. Lu, 2013. Experimental study on the conduction function of nano-hydroxyapati artificial bone. IET Micro & Nano Letters5(11):19-27.