The Effect of Morphology of SOFC Layers Made by 3D Printer on the Electrochemical Properties of the Cell
الموضوعات :Keyvan Mirzaee Fashalameh 1 , Zahra Sadeghian 2 , Ramin Ebrahimi 3
1 - 1 Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran
2 Department of Engineering, payam Noor University (PNU), Tehran, Iran
2 - Research Institute of Petroleum Industry (RIPI), Tehran, Iran
3 - Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran
الکلمات المفتاحية: Solid oxide fuel cell, Electrical Conductivity, Electrochemical properties, 3D Printing,
ملخص المقالة :
The microstructure and properties of solid oxide fuel cell (SOFC) connected to the fabrication process are discussed in this paper. In this research, we investigate the relationship between electrochemical performance in solid oxide fuel cells and the evolution of the morphology of its electrodes. This work fabricated a planar multilayer anode-supported, anode functional layer (AFL), electrolyte, and cathode solid oxide fuel cell through slurry-based 3D printing. After drying and sintering, scanning electron microscope (SEM) images a multilayer porous structure with large pores up to several microns and smaller pores of 100 nm, and the constituent particles' microstructure for anode-cathode layers were observed. The electrolyte layer structure was dense and without pores. In the study of electrochemical properties, the maximum power density at the output voltage of 0.5 V was achieved at 0.84 W/cm2 at an open-circuit voltage (OCV) of 1.06 V at 800 °C with H2 gas as fuel. The impedance curve values under open-circuit voltage were 0.23 V and 1.25 V at high and low frequencies, respectively.
[1] H. Buchkremer, U. Diekmann, D. Stöver, “Component Manufacturing and Stack Integration of Anode-supported Planar Sofc System”. Proceedings of the Second European Solid Oxide Fuel Cell Forum, Vol. 1, 1996, pp. 221-228.
[2] H. O, K. Nozawa, “Development of Highly Efficient Planar Solid Oxide Fuel Cells”, Special Feature, vol. 6, 2008, pp. 680-690
[3] J. H. Song, S.-I. Park, J.-H. Lee, H.-S. Kim, “Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC”, Journal of materials processing technology, vol. 198, 2008, pp. 414-418,
[4] Kim. S. D, Lee. J. J. Moon, H. Hyun, S. H. Moon, J. Kim. J, “Effects of Anode and Electrolyte Microstructures on Performance of Solid Oxide Fuel Cells”, Journal of Power Sources, vol. 169, 2007, pp. 265-270.
[5] Pierre, A. C, Introduction to Sol-gel Processing, Springer, New York, 1998.
[6] R. Mücke, “Introduction to SOFC Technologies Manufacturing of SOFCs”, Joint European Summer School for Fuel Cell and Hydrogen Technology Viterbo, Italy, 2011,198.
[7] S. Y. Park, C. W. Na, J. H. Ahn, R. H. Song, J. H. Lee, “Preparation of highly porous NiO–gadolinium-doped ceria nano-composite powders by one-pot glycine nitrate process for anode-supported tubular solid oxide fuel cells”, Journal of the Asian Ceramic Societies, vol. 2, 2014, pp. 339-346.
[8] J. C. Ruiz-Morales, A. Taranco´n, J. Canales-Va´zquez, J. Me´ndez-Ramos, L. Herna´ndez-Afonso, P. Acosta-Mora, J. R. Marı ´n Ruedac and R. Ferna´ndez-Gonza´leza, “Three dimensional printing of components and functional devices for energy and environmental applications”, Energy & Environmental Science, Vol. 10, 2017, pp. 846-860
[9] M. M. Torrell, P. Leone, A. Tarancón, “Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications” Journal of the European Ceramic Society, Vol. 39, 2019, pp. 9-16.
[10] H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa, et al, “Configurational and electrical behavior of Ni‐YSZ cermet with novel microstructure for solid oxide fuel cell anodes”, Journal of the Electrochemical Society, vol. 144, 1997, pp. 641-646.
[11] S. Pratihar, R. N. Basu, S. Mazumder, H. S. Maiti, “Electrical conductivity and microstructure of Ni-YSZ anode prepared by liquid dispersion method”, Electrochemical Society Proceedings, Vol. 1999-19, 1999, pp. 513-521.
[12] J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim, K. H. Yoon, “Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni–YSZ cermet”, Solid State Ionics, vol. 148, 2002, pp. 15-26.
[13] D. Medvedev, J. Lyagaeva, G. Vdovin, S. Beresnev, A. Demin and P. Tsiakaras, “A tape calendering method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance”, Electrochimica Acta, vol. 210, 2016, pp. 681-688.
[14] Dehua, D. Jianfeng, G. Xingqin, L. Guangyao, Meng, “Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting”, Journal of Power Sources, Vol. 165, 2007, pp. 217–223.
[15] D. Dong, Y. Huang, X. Zhang, L. He, C. Z. Li, H. W, “Shape forming of ccs with controllable microstructure by drying-free colloidal casting”, Journal of Materials Chemistry, Vol. 19, 2009, 7070–7074.
[16] G. B. Balazs, R. S. Glass, “AC impedance studies of rare earth oxide doped ceria”, Solid State Ionics, vol. 76, 1995, pp. 155-162.
[17] Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda and N. Imanishai, “Electrical conductivity of the ZrO2–Ln2O3 (Ln= lanthanides) system”, Solid State Ionics, vol. 121, 1999, pp. 133-139.
[18] J. P. Viricelle, C. Pijolat, B. Riviere, D. Rotureau, D. Briand, N.F. de Rooij, “Compatibility of screen-printing technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development” Sensors and Actuators. Vol. B 118, 2006, pp. 263–268.
[19] G.N. Almutairi, Y. M. Alyousef, F.S.Alenazey, S. A Alnassar, H. Alsmail, M. Ghouse, “Electrochemical Characteristics of La0.65Sr0.3MnO3 and La0.8Sr0.2MnO3 Nanoceramic Cathode Powders for Intermediate Temperature Solid Oxide Fuel Cell (SOFC) Application”, Int. J. Electrochem. Sci. Vol. 12, 2017, pp. 8148 – 8166.
[20] G. Almutairi1, F. Alenazey,Y. Yousef1, B. Alshammari2, “Alanine Assisted Synthesis and Characterization of La0.65Sr0.3MnO3 (LSM)”, Int. J. Electrochem. Sci. Vol. 12, 2017, pp. 11616 – 11632.
[21] C. Levy, Yu. Zhong, C. Morel, S, Marlina, A. Assisted. “Thermodynamic Stabilities of La2Zr2O7 and SrZrO3 in SOFC and Their Relationship with LSM”, Synthesis Journal of The Electrochemical Society. Vol. 157, 2010, B1597-B1601.
[22] J. Fergus, R. Hui, X. Li, D. P. Wilkinson, J. Zhang, Solid oxide fuel cells: materials properties and performance, CRC press, 2016. Pp. 156.
[23] S. Pratihar, R. N. Basu, S. Mazumder, H. S. Maiti, “Electrical conductivity and microstructure of Ni-YSZ anode prepared by liquid dispersion method”, Electrochemical Society Proceedings, Vol. 1999-19, 1999, pp. 513-521.
[24] Buchkremer, H., Diekmann, U., and Stöver, D, “Component Manufacturing and Stack Integration of Anode-supported Planar Sofc”, System Proceedings of the Second European Solid Oxide Fuel Cell Forum, Vol. 1, 1996, pp. 221-228.
[25] V. M, J. O. Deutschmann, “Modeling of Solid-Oxide Fuel Cells”, Z. Phys. Chem, Vol. 221, pp. 443–478.
[26] H. Tu, X. Liu and Q. Yu, “Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells”, Journal of the Power Sources, vol. 196, 2011, pp. 3109-3113.
[27] M. Irshad, K. Siraj, R. Raza, A. Ali, P. Tiwari, B. Zhu, et al., “A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance”, Applied Sciences, vol. 6, 2016, p. 75.
[28]T. Franco, Z. Ilhan, M. Lang, G. Schiller, P. Szabo, “Investigation of Porous Metallic Substrates for Plasma Sprayed Thin-film Sofcs”, The Electrochemical Society. Vol. 7, 2005, pp. 344-356.
[29] P. Holtappels, U. Stimming, Solid Oxide Fuel Cells (Sofc) in: Handbook of Fuel Cells, John Wiley & Sons, Ltd, New York, 2010, p. 453.
[30] Z.Tang, Y. Xie, H. Hawthorne, D. Ghosh, “Sol–gel Processing of Sr0.5 Sm0.5 CoO3 Film”, Journal of Power Sources, Vol. 157, 2006, pp. 385-388.
[31] C. Xia, Y. Zhang, M. Liu, “Lsm-Gdc Composite Cathodes Derived from a Sol-gel Process Effect of Microstructure on Interfacial Polarization Resistance”, Electrochemical and Solid-state Letters, Vol. 6, 2003, pp. A290-A292.
[32] H. Jinyan, ua. Kongfa, C. X. Huanga, N. A. Xiaobo, D. Chengwei, F. Jiaming, W. W. Sua,b,c, “Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs”, Journal of Membrane Science. Vol. 318, 2014, pp. 445–451.
[33] H. Shimada, E. Takami, K. Takizawa, A. Hagiwara, M. Ihara, “Highly dispersed anodes for solid oxide fuel cells using NiO/YSZ/BZY triple-phase composite powders prepared by spray pyrolysis”, Solid State Ionics. Vol. 193, 2011, pp. 43–51.
[34] H. Liangfa, A. W. Chang, Y. Huang, “Porous Yttria-Stabilized Zirconia Ceramics with Ultra-Low Thermal Conductivity”, Journal of Materials Science, Vol. 45, 2010, Pp. 3242–3246.
[35] W. Bao, Q. Chang, G, Meng. “Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell”, Journal of Membrane Science, Vol. 259, 2005, 103–109.
[36] D. Salehzadeh, M. Torabi, Z. Sadeghian, P. Marashi, “A multiscale-architecture solid oxide fuel cell fabricated by electrophoretic deposition technique” Journal of Alloys and Compounds, Vol. 830, 2020, pp. 1546-1554.
[37] J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, S. C. Singhal, (1999). Polarization effects in intermediate temperature, anode‐supported solid oxide fuel cells. Journal of the Electrochemical Society. vol. 146, pp. 69-78.
[38] G. B. Jung, T. J. Huang, C.-L. Chang, “Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte”, Journal of Solid State Electrochemistry, Vol. 6, 2002. pp. 225-230.
[39] S. Tao, J. T. Irvine, “A Redox-stable Efficient Anode for Solid-oxide Fuel Cells, Nature Materials. Vol. 2, 2003, pp. 320-323.
[40] T. L. Nguyen, T.Kato, Nozaki, T. Honda, A.Negishi, K. Kato, Y. Iimura, “Application of (Sm0.5Sr0.5) CoO3 as a Cathode Material to (Zr, Sc) O2 Electrolyte with Ceria-Based Interlayers for Reduced-temperature Operation Sofcs”, Journal of the Electrochemical Society, Vol. 153, 2006. pp. A1310-A1316.
[41] Y. Zhang, “Fabrication and Characterisation of Planar and Tubular Solid Oxide Fuel Cell Anodes”, Edinburgh Napier University”, MSc by Research. Vol. 2, 2013, pp. 24-24.
[42] S. Singhal, “Advances in Solid Oxide Fuel Cell Technology”, Solid State Ionics, Vol.135, 2000, pp. 305-313.
[43] H. Rob, W. Zhenwei, Olivera, W. Lars, R. Jasna, J. Sing, Y. Radenka, M. Dave, G. “Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges”, Journal of Power Sources, Vol. 170, Issue 2, 2007, PP. 308-323.
[44] Y. Huang, J. Vohs, R. Gorte, “Sofc Cathodes Prepared by Infiltration with Various LSM Precursors. Electrochemical and Solid-State Letters”, Vol. 9, 2006, pp. A237-A240.
[45] R. Gorte, H. Kim, J. M. Vohs, “Novel Sofc Anodes for the Direct Electrochemical Oxidation of Hydrocarbon” Journal of Power Sources”,Vol. 106, 2002, pp. 10-15.
[46] M. Gross, M. D Vohs, R. J. Gorte, “A Study of Thermal Stability and Methane Tolerance of Cu-based Sofc Anodes with Electrodeposited Co”, Electrochimical Acta. Vol. 52, 2007, pp. 1951-1957.
[47] H. A. Hamedani, M. Baniassadi, M.Khaleel, X. Sun, S. Ahzi, D. Ruch, H. Garmestani, “Microstructure, Property and Processing Relation in Gradient Porous Cathode of Solid Oxide Fuel Cells using Statistical Continuum Mechanics”, Journal of Power Sources, Vol. 196, 2011, pp. 6325-6331.