Fabrication of the Ordered Nanocells of Anodic Aluminum Oxide and the Generation of Zn-Mn Ferrite Phase within Them
الموضوعات :masoud soltani 1 , Zeinab Erfani Gahrouei 2 , Saeed Akhavan 3 , Ali Shafyei 4
1 - Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
2 - Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
3 - Department of materials engineering, Isfahan university of technology, Isfahan, Iran
4 - Professor of Materials Engineering, Isfahan University of Technology, Iran
الکلمات المفتاحية: temperature, magnetic, ferrite, anodizing, nanocells,
ملخص المقالة :
Different ceramic coatings can be fabricated on aluminum alloys by the anodizing process. In this process, the nanocells can grow directly from the bottom toward the surface of the coating layer. The ordered porous structure of the anodic aluminum oxide (AAO) layer is a very suitable template for the growth of magnetic nanowires. At this study, one- and two-step anodizing processes were conducted to fabricate the oxide layer in an appropriate acidic electrolyte at three different temperatures (0, -5, -10 ⁰C) and three different voltages (20, 27, 35 V) for 50 min on a 7075 aluminium alloy (7075 AA). The results showed that the samples’ thickness increased with increasing the voltage and decreasing the temperature. The microhardness of samples under different voltages increased with decreasing the temperature. Field emission scanning electron microscopy (FESEM) images were taken from the back and cross-sections of nanocells. The results indicated that the samples which were anodized by the two-step process at -10 ⁰C and 35 V had yielded the best order. Afterward, Zn-Mn ferrite nanowires were produced by electrochemical deposition within the nanocells. X-ray diffraction (XRD) confirmed the formation of the Zn-Mn phase, and FESEM images showed the bulk morphology of nanowires with an appropriate saturation magnetization of about 63.64 emu/g.
[1] A. Santos, L. Vojkuvka, J. Pallarés, J. Ferré-Borrull, L. Marsal, "In situ electrochemical dissolution of the oxide barrier layer of porous anodic alumina fabricated by hard anodization", J. Electroanal. Chem. Vol. 632, No. 1-2, 2009, pp. 139-142.
[2] H.-s. Kim, D.-h. Kim, W. Lee, S.J. Cho, J.-H. Hahn, H.-S. Ahn, "Tribological properties of nanoporous anodic aluminum oxide film", Surf. Coat. Technol. Vol. 205, No. 5, 2010, pp. 1431-1437.
[3] M. Yoshimoto, Y. Morizono, S. Tsurekawa, T. Baba, "Anodizing of aluminum in sulfuric acid and oxalic acid solutions with percarboxylic acid-based additive", J. Ceram. Soc. Japan. Vol. 120, No. 1403, 2012, pp. 276-279.
[4] A. Brudzisz, A. Brzózka, G.D. Sulka, "Effect of processing parameters on pore opening and mechanism of voltage pulse detachment of nanoporous anodic alumina", Electrochim. Acta Vol. 178, No. 2015, pp. 374-384.
[5] S. Huang, B. Jiang, C. Liu, Q. Shao, H. Li, "Effect of negative current on the microstructure of oxide coatings prepared by hybrid pulse anodization", Metals. Vol. 9, No. 1, 2019, pp. 22.
[6] Y. Wong, M. Affendy, S. Lau, P. Teh, H. Lee, C. Tan, S. Ramesh, "Effects of anodisation parameters on thin film properties: A review", Mater. Sci. Technol. Vol. 33, No. 6, 2017, pp. 699-711.
[7] R. Menini, M. Farzaneh, "Elaboration of al2o3/ptfe icephobic coatings for protecting aluminum surfaces", Surf. Coat. Technol. Vol. 203, No. 14, 2009, pp. 1941-1946.
[8] Z. Ghalmi, M. Farzaneh, "Durability of nanostructured coatings based on ptfe nanoparticles deposited on porous aluminum alloy", Appl. Surf. Sci. Vol. 314, No. 2014, pp. 564-569.
[9] Y. Wang, L. Xia, J. Ding, N. Yuan, Y. Zhu, "Tribological behaviors of lubricants modified nanoporous anodic alumina film", Tribol. Lett. Vol. 49, No. 2, 2013, pp. 431-437.
[10] S. Chen, C. Kang, J. Wang, C. Liu, K. Sun, "Synthesis of anodizing composite films containing superfine al2o3 and ptfe particles on al alloys", Appl. Surf. Sci. Vol. 256, No. 22, 2010, pp. 6518-6525.
[11] I. Mohammadi, A. Afshar, S. Ahmadi, "Al2o3/si3n4 nanocomposite coating on aluminum alloy by the anodizing route: Fabrication, characterization, mechanical properties and electrochemical behavior", Ceram. Int. Vol. 42, No. 10, 2016, pp. 12105-12114.
[12] X.-Y. Lv, J.-W. Hou, Z.-X. Gao, H.-F. Liu, "Synthesis and characteristics of large-area and high-filling cds nanowire arrays in aao template", J. nanosci. nanotechnol. Vol. 18, No. 5, 2018, pp. 3709-3712.
[13] S. Ateş, E. Baran, B. Yazıcı, "The nanoporous anodic alumina oxide formed by two-step anodization", Thin Solid Films, Vol. 648, No. 2018, pp. 94-102.
[14] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, J. Liao, C. Chen, Y. Shen, L. Jin, "A new self-ordering regime for fast production of long-range ordered porous anodic aluminum oxide films", Electrochim. Acta. Vol. 178, No. 2015, pp. 11-17.
[15] W.J. Stępniowski, A. Nowak-Stępniowska, A. Presz, T. Czujko, R.A. Varin, "The effects of time and temperature on the arrangement of anodic aluminum oxide nanopores", Mater. charact. Vol. 91, No. 2014, pp. 1-9.
[16] S. Akiya, T. Kikuchi, S. Natsui, N. Sakaguchi, R.O. Suzuki, "Self-ordered porous alumina fabricated via phosphonic acid anodizing", Electrochim. Acta. Vol. 190, No. 2016, pp. 471-479.
[17] W. Lee, "Structural engineering of porous anodic aluminum oxide (aao) and applications", 2015.
[18] A. O Araoyinbo, A. Iskandar Azmi, C. Mohd Ruzaidi Ghazali, A. Rahmat, K. Hussin, M. Mustafa Albakri Abdullah, "Nanoporous alumina fabrication: A short review", Nanosci. Nanotechnol.-Asia. Vol. 7, No. 2, 2017, pp. 183-199.
[19] J. ter Maat, R. Regeling, C.J. Ingham, C.A. Weijers, M. Giesbers, W.M. de Vos, H. Zuilhof, "Organic modification and subsequent biofunctionalization of porous anodic alumina using terminal alkynes", Langmuir. Vol. 27, No. 22, 2011, pp. 13606-13617.
[20] C.B. Gorman, R.J. Petrie, J. Genzer, "Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization", Macromol. Vol. 41, No. 13, 2008, pp. 4856-4865.
[21] M. Pashchanka, J. Engstler, J.J. Schneider, V. Siozios, C. Fasel, R. Hauser, I. Kinski, R. Riedel, S. Lauterbach, H.J. Kleebe, "Polymer‐derived sioc nanotubes and nanorods via a template approach", Eur. J. Inorg. Chem. Vol. 2009, No. 23, 2009, pp. 3496-3506.
[22] Y. Hu, M. Gu, X. Liu, J. Zhang, S. Huang, B. Liu, "Sol-gel template synthesis and characterization of lu2o3: Eu3+ nanowire arrays", Micromachines. Vol. 9, No. 11, 2018, pp. 601.
[23] K. Wang, P. Birjukovs, D. Erts, R. Phelan, M.A. Morris, H. Zhou, J.D. Holmes, "Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres", J. Mater. Chem. Vol. 19, No. 9, 2009, pp. 1331-1338.
[24] Y. Wang, M. Wu, Z. Jiao, J.Y. Lee, "One-dimensional sno2 nanostructures: Facile morphology tuning and lithium storage properties", Nanotechnol. Vol. 20, No. 34, 2009, pp. 345704.
[25] J. Zhou, J. He, P. He, H. Zhang, M. Tang, Y. Ji, X. Liu, W. Dang, "Ternary alloy ni–w–p nanoparticles electroless deposited within alumina nanopores", Mater. Sci. Technol. Vol. 24, No. 10, 2008, pp. 1250-1253.
[26] G. Wang, C. Shi, N. Zhao, X. Du, "Synthesis and characterization of ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition", Mater. Lett. Vol. 61, No. 18, 2007, pp. 3795-3797.
[27] I.-W. Sun, J.-K. Chang, "Electrodeposition of nanomaterials", 2017.
[28] P.-S. Cheow, E.Z.C. Ting, M.Q. Tan, C.-S. Toh, "Transport and separation of proteins across platinum-coated nanoporous alumina membranes", Electrochim. Acta. Vol. 53, No. 14, 2008, pp. 4669-4673.
[29] W.-F. Hsu, C.-G. Kuo, Y.-C. Chao, J.-F. Lee, C.-F. Yang, F.-R. Juang, "Growth of zno nano-wire arrays using aao template and atomic-layer deposition method", Proc. 2016 International Conference on Applied System Innovation (ICASI), 2016, pp. 1-4.
[30] D.A. Brevnov, M.J. Barela, M.J. Brooks, G.P. López, P.B. Atanassov, "Fabrication of anisotropic super hydrophobic/hydrophilic nanoporous membranes by plasma polymerization of c 4 f 8 on anodic aluminum oxide", J. Electrochem. Soc. Vol. 151, No. 8, 2004, pp. B484-B489.
[31] E. Fleming, F. Du, E. Ou, L. Dai, L. Shi, "Thermal conductivity of carbon nanotubes grown by catalyst-free chemical vapor deposition in nanopores", Carbon. Vol. 145, No. 2019, pp. 195-200.
[32] S.J. Hurst, E.K. Payne, L. Qin, C.A. Mirkin, "Multisegmented one‐dimensional nanorods prepared by hard‐template synthetic methods", Angew. Chem. Int. Ed. Vol. 45, No. 17, 2006, pp. 2672-2692.
[33] W. Lee, R. Scholz, K. Nielsch, U. Gösele, "Titelbild: A template‐based electrochemical method for the synthesis of multisegmented metallic nanotubes (angew. Chem. 37/2005)", Angew. Chem. Vol. 117, No. 37, 2005, pp. 6055-6055.
[34] P.G. Schiavi, P. Altimari, A. Rubino, F. Pagnanelli, "Electrodeposition of cobalt nanowires into alumina templates generated by one-step anodization", Electrochim. Acta. Vol. 259, No. 2018, pp. 711-722.
[35] W. Chen, S. Tang, M. Lu, Y. Du, "The magnetic properties and reversal of fe–co nanowire arrays", Journal of Physics: Condensed Matter, Vol. 15, No. 26, 2003, pp. 4623.
[36] D. Sellmyer, M. Zheng, R. Skomski, "Magnetism of fe, co and ni nanowires in self-assembled arrays", J. Phys.: Condens. Matter. Vol. 13, No. 25, 2001, pp. R433.
[37] T. Mehmood, A. Mukhtar, B.S. Khan, K. Wu, "Growth mechanism of electrodeposited fe, co and ni nanowires in the form of self-assembled arrays at fixed potential", Int. J. Electrochem. Sci. Vol. 11, No. 2016, pp. 6423-31.
[38] J. Liu, F. Wang, J. Zhai, J. Ji, "Controllable growth and magnetic characterization of electrodeposited nanocrystalline ni–p alloy nanotube and nanowire arrays inside aao template", J. Electroanal. Chem. Vol. 642, No. 2, 2010, pp. 103-108.
[39] Y. Xie, D. Kocaefe, C. Chen, Y. Kocaefe, "Review of research on template methods in preparation of nanomaterials", J. Nanomater. Vol. 2016, No. 2016, pp. 11.
[40] K. Ang, S. Venkatraman, R. Ramanujan, "Magnetic pnipa hydrogels for hyperthermia applications in cancer therapy", Mater. Sci. Eng. C, Vol. 27, No. 3, 2007, pp. 347-351.
[41] R. Jamaati, M.R. Toroghinejad, A. Najafizadeh, "Application of anodizing and car processes for manufacturing al/al2o3 composite", Mater. Sci. Eng. A, Vol. 527, No. 16-17, 2010, pp. 3857-3863.
[42] S.-J. Ma, P. Luo, H.-h. Zhou, C.-P. Fu, Y.-F. Kuang, "Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte", Trans. Nonferrous Met. Soc. China, Vol. 18, No. 4, 2008, pp. 825-830.
[43] X. Wang, G.-R. Han, "Fabrication and characterization of anodic aluminum oxide template", Microelec. Eng. Vol. 66, No. 1-4, 2003, pp. 166-170.
[44] C.H. Voon, B.Y. Lim, K. Foo, U. Hashim, S.T. Sam, M. Arshad, M. Khairuddin, N. Mustafa, "Synthesis of porous anodic alumina (paa) on aluminum alloy aa6061 in mixture of phosphoric acid and oxalic acid", Proc. Mater. Sci. Forum. 2016, pp. 237-241.
[45] I. De Graeve, H. Terryn, G.E. Thompson, "Influence of local heat development on film thickness for anodizing aluminum in sulfuric acid", J. Electrochem. Soc. Vol. 150, No. 4, 2003, pp. B158-B165.
[46] P.G. Sheasby, R. Pinner, The surface treatment and finishing of aluminium and its alloys, ed., ASM Int. 2001,
[47] C. Voon, M.N.B. Derman, U. Hashim, K. Foo, T. Adam, "Effect of anodizing voltage on the morphology and growth kinetics of porous anodic alumina on al-0.5 Wt% mn alloys", Proc. Adv. Mater. Res. 2014, pp. 101-106.
[48] T. Aerts, J.-B. Jorcin, I. De Graeve, H. Terryn, "Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium", Electrochim. Acta. Vol. 55, No. 12, 2010, pp. 3957-3965.
[49] T. Aerts, T. Dimogerontakis, I. De Graeve, J. Fransaer, H. Terryn, "Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film", Surf. Coat. Technol. Vol. 201, No. 16-17, 2007, pp. 7310-7317.
[50] K. Ng, Y. Lin, A. Ngan, "Deformation of anodic aluminum oxide nano-honeycombs during nanoindentation", Acta Mater. Vol. 57, No. 9, 2009, pp. 2710-2720.
[51] T.-H. Fang, T.H. Wang, S.-H. Kang, C.-H. Chuang, "Indentation deformation of mesoporous anodic aluminum oxide", Curr. Appl. Phys. Vol. 9, No. 4, 2009, pp. 880-883.
[52] A.H. Mahmud, A.S. Habiballah, A. Jani, "The effect of applied voltage and anodisation time on anodized aluminum oxide nanostructures", Proc. Mater. Sci. Forum. 2015, pp. 103-108.
[53] N. Hassanzadeh, H. Omidvar, "The effect of gradual decreasing the anodizing voltage on the morphology of alumina nanochannels", Researchgate.
[54] L. Bouchama, N. Azzouz, N. Boukmouche, J. Chopart, A. Daltin, Y. Bouznit, "Enhancing aluminum corrosion resistance by two-step anodizing process", Surf. Coat. Technol. Vol. 235, No. 2013, pp. 676-684.
[55] Y.-C. Kim, B. Quint, R.W. Kessler, D. Oelkrug, "Structural properties of electrochemically designed porous oxide films on almg1", J. electroanal. chem. Vol. 468, No. 1, 1999, pp. 121-126.
[56] G. Bertotti, Hysteresis in magnetism: For physicists, materials scientists, and engineers, ed., Academic press, 1998,
[57] C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.-H. Park, J. Park, J.-Y. Kim, B. Kim, "Electronic structure of vertically aligned mn-doped CoFe2O4 nanowire and their application as humidity sensors and photodetectors", J. Phys. Chem. C, Vol. 113, No. 17, 2009, pp. 7085-7090.
[58] C. Pham-Huu, N. Keller, C. Estournes, G. Ehret, M. Ledoux, "Synthesis of CoFe2O4 nanowire in carbon nanotubes. A new use of the confinement effect", Chem. Commun. Vol. No. 17, 2002, pp. 1882-1883.
[59] S.M. El-Sheikh, F.A. Harraz, M.M. Hessien, "Magnetic behavior of cobalt ferrite nanowires prepared by template-assisted technique", Mater. Chem. Phys. Vol. 123, No. 1, 2010, pp. 254-259.
[60] T. Prabhakaran, R. Mangalaraja, J.C. Denardin, J. Jiménez, "The effect of reaction temperature on the structural and magnetic properties of nano CoFe2O4", Ceram. Int. Vol. 43, No. 7, 2017, pp. 5599-5606.
[61] X.-y. HOU, J. FENG, X.-h. LIU, M.-l. ZHANG, "Comparable studies of adsorption and magnetic properties of ferrite MnFe2O4 nanoparticles, porous bulks and nanowires", Chem. Res. Chinese Uni. Vol. 27, No. 4, 2011, pp. 543-546.
[62] H.-J. Cui, J.-W. Shi, B. Yuan, M.-L. Fu, "Synthesis of porous magnetic ferrite nanowires containing mn and their application in water treatment", J. Mater. Chem. A, Vol. 1, No. 19, 2013, pp. 5902-5907.
[63] L. Malkinski, J.-H. Lim, W.-S. Chae, H.-O. Lee, E.-M. Kim, J.-S. Jung, "Fabrication and magnetic properties of MnFe2O4 nanowire arrays", Elec. Mater. Lett. Vol. 5, No. 2, 2009, pp. 87-90.
[64] S. Liu, B. Yue, K. Jiao, Y. Zhou, H. He, "Template synthesis of one-dimensional nanostructured spinel zinc ferrite", Mater. Lett. Vol. 60, No. 2, 2006, pp. 154-158.
[65] Y. Li, Y. Huang, L. Yan, S. Qi, L. Miao, Y. Wang, Q. Wang, "Synthesis and magnetic properties of ordered barium ferrite nanowire arrays in aao template", Appl. Surf. Sci. Vol. 257, No. 21, 2011, pp. 8974-8980.
[66] Z. Hua, R. Chen, C. Li, S. Yang, M. Lu, B. Gu, Y. Du, "Cofe2o4 nanowire arrays prepared by template-electrodeposition method and further oxidization", J. alloy. compd. Vol. 427, No. 1-2, 2007, pp. 199-203.