Fabrication of anodic aluminium oxide template and the generation of magnetic Co nanowires within it
الموضوعات :masoud soltani 1 , Reihane Aliramezani 2 , saeid akhavan 3 , Zeinab Erfani Gahrouei 4 , mohammad noormohammadi 5
1 - Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
2 - Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
3 - Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
4 - Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
5 - Department of Physics, Kashan University, Kashan, Iran
الکلمات المفتاحية: electrodeposition, nanowires, Coercivity, anodizing, Al alloy,
ملخص المقالة :
Among nanostructured materials, magnetic nanowires have been heeded because of their high shape anisotropy and their easy fabrication methods. Electrochemical deposition on the anodic aluminium oxide (AAO) is one of the best methods to grow different nanowires. In this paper, the AAO was fabricated on the 1100 Al alloy substrate by hard anodizing in 0.3 M oxalic acid solution. Then, a barrier layer thinning process was carried out for the electrodeposition process. A pulsed electrodeposition process was used to fill the nano-pores. According to this method, cobalt nanowires were grown in the nano-holes. Structural, crystalline, and magnetic properties of the samples were evaluated using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM), respectively. The results showed that nanowires have a diameter of 87 nm and crystalline structure with crystalline plates in directions (100), (002), and (110). A coercivity value of 600 Oe was obtained for nanowires, which is several times larger than cobalt bulk.
[1] S. Goolaup, A. Adeyeye, N. Singh, G. Gubbiotti, "Magnetization switching in alternating width nanowire arrays", Phys. Rev. B, Vol. 75, No. 14, 2007, pp. 14-30.
[2] W. Wu, B. Cui, X.-y. Sun, W. Zhang, L. Zhuang, L. Kong, S.Y. Chou, "Large area high density quantized magnetic disks fabricated using nanoimprint lithography", J. Vac. Sci. Tech. B: Microelectron. Nanometer Struct. Process. Meas. Phenom., Vol. 16, No. 6, 1998, pp. 3825-3829.
[3] R. Skomski, H. Zeng, M. Zheng, D.J. Sellmyer, "Magnetic localization in transition-metal nanowires", Phys. Rev. B, Vol. 62, No. 6, 2000, pp. 3-9.
[4] X. Han, Q. Liu, J. Wang, S. Li, Y. Ren, R. Liu, F. Li, "Influence of crystal orientation on magnetic properties of hcp co nanowire arrays", J. Phys. D: Appl. Phys., Vol. 42, No. 9, 2009, pp. 95005.
[5] K. Maleki, S. Sanjabi, Z. Alemipour, "Ac electrodeposition of Ni-Mn alloy nanowires in aao template", Int. J. Mod. Phys. B, Vol. 29, No. 31, 2015, pp. 155-224.
[6] X.-Y. Lv, J.-W. Hou, Z.-X. Gao, H.-F. Liu, "Synthesis and characteristics of large-area and high-filling cds nanowire arrays in aao template", J. Nanosci. Nanotechnol., Vol. 18, No. 5, 2018, pp. 3709-3712.
[7] P. Wang, L. Gao, L. Wang, D. Zhang, S. Yang, X. Song, Z. Qiu, R.-I. Murakami, "Magnetic properties of feni nanowire arrays assembled on porous aao template by ac electrodeposition", Int. J. Mod. Phys. B, Vol. 24, No. 15, 2010, pp. 2302-2307.
[8] M. Michalska-Domańska, W.J. Stępniowski, L.R. Jaroszewicz, "Characterization of nanopores arrangement of anodic alumina layers synthesized on low-(aa1050) and high-purity aluminum by two-step anodizing in sulfuric acid with addition of ethylene glycol at low temperature", J. Porous Mater., Vol. 24, No. 3, 2017, pp. 779-786.
[9] Y. Choi, J. Hyeon, S. Bu, T. Bae, "Effects of anodizing voltages and corresponding current densities on self-ordering process of nanopores in porous anodic aluminas anodized in oxalic and sulfuric acids", J. Korean Phys. Soc., Vol. 55, No. 2, 2009, pp. 835-840.
[10] W.J. Stępniowski, Z. Bojar, "Synthesis of anodic aluminum oxide (aao) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features", Surf. Coat. Technol., Vol. 206, No. 2-3, 2011, pp. 265-272.
[11] T. Aerts, I. De Graeve, H. Terryn, "Study of initiation and development of local burning phenomena during anodizing of aluminium under controlled convection", Electrochim. Acta, Vol. 54, No. 2, 2008, pp. 270-279.
[12] J. Thangthong, S. Prombanpong, "An analysis of burn defect in hard anodized process of al 3003", Adv. Mater. Res., Vol. 1119, 2015, pp. 475.
[13] L. Woo, R. Ji, U. Gösele, K. Nielsch, "Fast fabrication of long-range ordered porous alumina membranes by hard anodization", Nature Mater., Vol. 5, No. 9, 2006, pp. 741.
[14] S. Park, Y.-S. Kim, W.B. Kim, S. Jon, "Carbon nanosyringe array as a platform for intracellular delivery", Nano Lett., Vol. 9, No. 4, 2009, pp. 1325-1329.
[15] J. Zhou, J. He, P. He, H. Zhang, M. Tang, Y. Ji, X. Liu, W. Dang, "Ternary alloy ni–w–p nanoparticles electroless deposited within alumina nanopores", Mater. Sci. Technol., Vol. 24, No. 10, 2008, pp. 1250-1253.
[16] F. Xiu-Xiu, H. Hai-Ning, Z. Shi-Ming, Y. Mao, D. Jun, S. Zhong, "Abnormal temperature dependence of coercivity in cobalt nanowires", Chinese Phys. Lett., Vol. 29, No. 7, 2012, pp. 077802.
[17] J. Chun, J. Lee, "Various synthetic methods for one‐dimensional semiconductor nanowires/ nanorods and their applications in photovoltaic devices", Eur. J. Inorg. Chem., Vol. 2010, No. 27, 2010, pp. 4251-4263.
[18] M. Noormohammadi, M. Moradi, "Structural engineering of nanoporous alumina by direct cooling the barrier layer during the aluminum hard anodization", Mater. Chem. Phys., Vol. 135, No. 2, 2012, pp. 1089-1095.
[19] A. Jokar, A. Ramazani, M. Almasi-Kashi, A. Montazer, "The roles of temperature and thickness of barrier layer in the electrodeposition efficiency of nickel inside anodic alumina templates", J. Mater. Sci.: Mater. Elect., Vol. 27, No. 4, 2016, pp. 3995-4002.
[20] M.A. Kashi, A. Ramazani, M. Ghaffari, V. Isfahani, "The effect of growth rate enhancement on the magnetic properties and microstructures of ac electrodeposited co nanowires using non-symmetric reductive/oxidative voltage", J. Cryst. Growth, Vol. 311, No. 21, 2009, pp. 4581-4586.
[21] D. Sellmyer, M. Zheng, R. Skomski, "Magnetism of fe, co and ni nanowires in self-assembled arrays", J. Phys.: Condens. Matter, Vol. 13, No. 25, 2001, pp. R433.
[22] R. Ferre, K. Ounadjela, J. George, L. Piraux, S. Dubois, "Magnetization processes in nickel and cobalt electrodeposited nanowires", Phys. Rev. B, Vol. 56, No. 21, 1997, pp. 14066.
[23] D. Qin, M. Lu, H. Li, "Magnetic force microscopy of magnetic domain structure in highly ordered co nanowire arrays", Chem. Phys. Lett., Vol. 350, No. 1-2, 2001, pp. 51-56.
[24] F. Li, T. Wang, L. Ren, J. Sun, "Structure and magnetic properties of co nanowires in self-assembled arrays", J. Phys.: Condens. Matter, Vol. 16, No. 45, 2004, pp. 8053.
[25] M.A. Kashi, A. Ramazani, M. Noormohammadi, M. Zarei, P. Marashi, "Optimum self-ordered nanopore arrays with 130–270 nm interpore distances formed by hard anodization in sulfuric/oxalic acid mixtures", J. Phys. D: Appl. Phys., Vol. 40, No. 22, 2007, pp. 7032.
[26] C.H. Voon, B.Y. Lim, K. Foo, U. Hashim, S.T. Sam, M.K.M. Arshad, A. Baharuddin, "Effect of concentration of oxalic acid on the synthesis of porous anodic alumina (paa) on aluminum alloy aa6061", Mater. Sci. Forum, 2016, pp. 281.
[27] W. Chen, M. Han, L. Deng, "High frequency microwave absorbing properties of cobalt nanowires with transverse magnetocrystalline anisotropy", Phys. B: Condens. Matter, Vol. 405, No. 6, 2010, pp. 1484-1488.
[28] A. Akbarzadeh, M. Samiei, S. Davaran, "Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine", Nanoscale Res. Lett., Vol. 7, No. 1, 2012, pp. 144.
[29] Z. Karimi, L. Karimi, H. Shokrollahi, "Nano-magnetic particles used in biomedicine: Core and coating materials", Mater. Sci. Eng. C, Vol. 33, No. 5, 2013, pp. 2465-2475.
[30] J. Das, V.S. Moholkar, S. Chakma, "Structural, magnetic and optical properties of sonochemically synthesized zr-ferrite nanoparticles", Powder Technol., Vol. 328, No. 2018, pp. 1-6.
[31] G. Bertotti, Hysteresis in magnetism: For physicists, materials scientists, and engineers, ed., Academic press, 1998,
[32] C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.-H. Park, J. Park, J.-Y. Kim, B. Kim, "Electronic structure of vertically aligned mn-doped cofe2o4 nanowires and their application as humidity sensors and photodetectors", J. Phys. Chem. C, Vol. 113, No. 17, 2009, pp. 7085-7090.
[33] C. Pham-Huu, N. Keller, C. Estournes, G. Ehret, M. Ledoux, "Synthesis of cofe 2 o 4 nanowire in carbon nanotubes. A new use of the confinement effect", Chem. Commun., Vol. No. 17, 2002, pp. 1882-1883.
[34] S.M. El-Sheikh, F.A. Harraz, M.M. Hessien, "Magnetic behavior of cobalt ferrite nanowires prepared by template-assisted technique", Mater. Chem. Phys., Vol. 123, No. 1, 2010, pp. 254-259.
[35] V.K. Varadan, L. Chen, J. Xie, Nanomedicine: Design and applications of magnetic nanomaterials, nanosensors and nanosystems, ed., John Wiley & Sons, 2008,
[36] A. Ramazani, M.A. Kashi, G. Seyedi, "Crystallinity and magnetic properties of electrodeposited co nanowires in porous alumina", J. Magn. Magn.Mater., Vol. 324, No. 10, 2012, pp. 1826-1831