Alfa- Bismuth(III)oxide catalyzed Biginelli reactions using experimentally designed optimized condition
الموضوعات :Mahdi Behzad 1 , marzie sabaghian 2 , Hamideh samari jahromi 3
1 - Department of Chemistry, Semnan University, Semnan 35351-19111, Iran
2 - Department of Chemistry, Semnan University, Semnan 35351-19111, Iran
3 - Research Institute of Petroleum Industry (RIPI), Environment and Biotechnology Division, West Blvd., Azadi Sports Complex, P.O. Box 14665-1998, Tehran, Iran
الکلمات المفتاحية: Experimental Design, Hydrothermal method, Biginelli, Bi2O3,
ملخص المقالة :
α-Bi2O3 was synthesized via a hydrothermal method at 180 °C for 12 h in 1 (S1) and 2 (S2) M KOH aqueous solutions, using Bi(NO3)3•5H2O as raw material. The synthesized material was characterized by X-ray powder diffraction (XRPD) technique. The XRPD results indicated that by using 1M KOH aqueous solution, α-Bi2O3 was obtained with small fractions of β-Bi2O3, while 2M KOH solution resulted in pure α-Bi2O3. The α-Bi2O3 was crystallized in a monoclinic crystal structure with space group of P21/c. The size and morphologies of the synthesized material was studied by field emission scanning electron microscope (FESEM). The FESEM images showed that the obtained material had multigonal structures in micron dimensions. The synthesized material was tested as catalyst in Biginelli reactions and excellent performance was achieved in the optimized conditions. Experimental design was used to obtain optimized reaction conditions. Also the optical properties of the obtained material were studied by ultraviolet visible (UV-Vis) diffuse reflectance spectrum (DRS).
[1] N. Cornei, N. Tancret, F. Abraham, O. Mentre´. "New ɛ-Bi2O3 Metastable Polymorph", Inorg. Chem., Vol. 45, 2006, pp. 4886−4888.
[2] S. Cao, P. Zhou, J. Yu, "Recent advances in visible light Bi-based photocatalysts", Chinese. J. Catal., Vol. 35, 2014, pp. 989-1007.
[3] F. Schröder, N. Bagdassarov, F. Ritter, L. Bayarjargal, "Temperature dependence of Bi2O3 structural parameters close to the α–δ phase transition", Phase Transitions. Vol. 83, 2010, pp. 311-325.
[4] M. Prekajski, A. Kremenović, B. Babić, M. Rosić, B. Matović, A. Radosavljević-Mihajlović, M. Radović. "Room-temperature synthesis of nanometric α-Bi2O3", Materials Letters., Vol. 64, 2010, pp. 2247–2250.
[5] K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich, T. Brezesinski, "Exceptional photocatalytic activity of ordered mesoporous β-Bi2O3 thin films and electrospun nanofiber mats," Chem. Mater., 22, 2010, pp. 3079-3085.
[6] J.-y. Xia, M.-T. Tang, C. Cui, S.-M. Jin, Y.-M. Chen, "Preparation of α-Bi2O3 from bismuth powders through low-temperature oxidation," Trans. Nonferrous. Met. Soc. China., Vol. 22, 2012, pp. 2289-2294.
[7] A. Feldman, W. S. Brower Jr, D. Horowitz, "Optical activity and Faraday rotation in bismuth oxide compounds," App. Phys. Lett., Vol. 16, 1970, pp. 201-202.
[8] A. Pan, A. Ghosh, "A new family of lead–bismuthate glass with a large transmitting window," J. Non. Cryst. Solids., Vol. 271, 2000, pp. 157-161.
[9] E. Y. Wang, K. A. Pandelišev, "The effect of chemical surface treatments on non‐native (Bi2O3) GaAs metal‐insulator‐semiconductor solar cells," J. Appl. Phys., Vol. 52, 1981, pp. 4818-4820.
[10] M. Schuisky, A. Hårsta, "Epitaxial growth of Bi2O2.33 by halide Cvd," Chem. Vapor. Depos., Vol. 2, 1996, pp. 235-238.
[11] S. Beg, S. Haneef, N. A. Al-Areqi, "Study of electrical conductivity and phase transition in Bi2O3–V2O5 system," Phase Transitions., Vol. 83, 2010, pp. 1114-1125.
[12] F. Qin, H. Zhao, G. Li, H. Yang, J. Li, R. Wang, Y. Liu, J. Hu, H. Sun, R. Chen, "Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis," Nanoscale., Vol. 6, 2014, pp. 5402-5409.
[13] A. Cabot, A. Marsal, J. Arbiol, J. Morante, "Bi2O3 as a selective sensing material for NO detection," Sensor. Actuat B:Chem., Vol. 99, 2004, pp. 74-89.
[14] X. Gou, R. Li, G. Wang, Z. Chen, D. Wexler, "Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application," Nanotechnol., Vol. 20, 2009, pp. 1-5.
[15] K. T. Lee, A. A. Lidie, S. Y. Jeon, G. T. Hitz, S. J. Song, E. D. Wachsman, "Highly functional nano-scale stabilized bismuth oxides via reverse strike co-precipitation for solid oxide fuel cells," J. Mater. Chem:A., Vol. 1, 2013, pp. 6199-6207.
[16] M. Schlesinger, S. Schulze, M. Hietschold, M. Mehring, "Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters," Dalton. Trans., Vol. 42, 2013, pp. 1047-1056.
[17] Z. Yu, J. Zhang, H. Zhang, Y. Shen, A. Xie, F. Huang, S. Li, "Facile solvothermal synthesis of porous Bi2O3 microsphere and their photocatalytic performance under visible light," Micro. Nano. Lett., Vol. 7, 2012, pp. 814-817.
[18] J. Wang, J. Liu, B. Wang, L. Zhu, J. Hu, H. Xu, "Fabrication of alpha-Bi2O3Microrods by Solvothermal Method and Their Photocatalytic Performance," Chem. Lett., Vol. 43, 2014, pp. 547-549.
[19] X. Luan, J. Jiang, Q. Yang, M. Chen, M. Zhang, L. Li, "Facile synthesis of bismuth oxide nanoparticles by a hydrolysis solvothermal route and their visible light photocatalytic activity," Environ. Eng. Manag. J., Vol. 14, 2015, pp. 703-707.
[20] J. Zhang Li, J. Bo Zhong, J. Zeng, F. Mei Feng, J. Jin He, "Improved photocatalytic activity of dysprosium-doped Bi2O3 prepared by sol–gel method," Mat. Sci. Semicon. Proc. , Vol. 16, 2013, pp. 379-384.
[21] H. Weidong, Q. Wei, W. Xiaohong, N. Hailong, "Thin bismuth oxide films prepared through the sol–gel method," Mater. Lett., Vol. 61, 2007, pp. 4100-4102.
[22] M. Mallahi, A. Shokuhfar, M. Vaezi, A. Esmaeilirad, V. Mazinani, "Synthesis and characterization of Bismuth oxide nanoparticles via sol-gel method," Am. J. Eng. Res., Vol. 3, 2014, pp. 162-165.
[23] T. Takeyama, N. Takahashi, T. Nakamura, S. Ito, "Growth of the Bi2O3 thin films under atmospheric pressure by means of halide CVD," J. Phys. Chem. Solids., Vol. 65, 2004, pp. 1349-1352.
[24] H. Fan, X. Teng, S. Pan, C. Ye, G. Li, L. Zhang, "Optical properties of δ-Bi2O3 thin films grown by reactive sputtering," App. Phys. Lett., Vol. 87, 2005, pp. 1-3.
[25] M. Sadeghi Roodsari, B. Shaabani, B. Mirtamizdoust, M. Dusek, K. Fejfarova, "Sonochemical Synthesis of Bismuth (III) Nano Coordination Compound and Direct Synthesis of Bi2O3 Nanoparticles from a Bismuth (III) Nano Coordination Compound Precursor" J. Inorg. Organomet. Polym., Vol. 25, 2015, pp. 1226–1232.
[26] Y. Hanifehpour, B. Mirtamizdoust, M. Hatami, B. Khomami, S.W. Joo, J. Mol. Struc. Vol.5, 2015, pp. 43-48.
[27] G. E. Box, N. R. Draper, "Empirical model-building and response surfaces: Wiley Series in probability and mathematical statistics," S. Prob. Math. Stat., (1987), ISBN 0471810339, 9780471810339.
[28] D. Song, R. Wang, Y. Chen, S. Zhang, C. Liu, G. Luo, "Copper (II) trifluoroacetate catalyzed synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones under solvent-free conditions," Reac. Kinet. Mech. Cat. Lett., Vol. 95, 2008, pp. 381-385.
[29] A. Dubey, B. G. Mishra, D. Sachdev, M. Sowmiya, "Heterogeneous liquid phase synthesis of 3, 4-dihydropyrimidine-2 (1H)-ones using aluminated mesoporous silica," Reac. Kinet. Mech. Cat. Lett., Vol. 93, 2008, pp. 149-155.
[30] F. Xu, J. J. Wang, Y. P. Tian, "New Procedure for One‐Pot Synthesis of 3, 4‐Dihydropyrimidin‐2 (1 H)‐ones by Biginelli Reaction," Synth. Commun., Vol. 38, 2008, pp. 1299-1310.
[31] Q. Song, X. An, F. Che, T. Shen, "Novel and Efficient Synthesis of DHPMs Catalyzed by di-DACH-Pyridylamide Ligands," J. Heterocyclic. Chem., Vol. 52, 2014, pp.1496-1502.
[32] Y. Moussaouia, R. B. Salemb, "Synthesis of 3,4-Dihydropyrimidinones via Phase Transfer Catalysis," J. Heterocyclic. Chem., Vol. 50, 2013, pp.1209-1212.
[33] S. Tu, F. Fang, S. Zhu, T. Li, X. Zhang, Q. Zhuang, "A new Biginelli reaction procedure using potassium hydrogen sulfate as the promoter for an efficient synthesis of 3, 4-dihydropyrimidin-2 (1H)-one," Synlett., Vol. 15, 2004, pp. 537-539.
[34] Q. Yang, Y. Li, Q. Yin, P. Wang, Y.-B. Cheng, "Hydrothermal synthesis of bismuth oxide needles," Mater Lett., Vol. 55, 2002, pp. 46-49.
[35] J. Pascual, J. Camassel, M. Mathieu, "Fine structure in the intrinsic absorption edge of TiO2," Phys. Rev. B: Solid State., Vol. 18, 1978, pp. 5606-5614.
[36] R. Myer, D.C. Montgomery, "Response surface methodology: process and product optimization using designed experiment, 3rd Ed," John Wiley and Sons: New York., 2002, pp. 343-350.
[37] E.D. Morgan, "Chemometrics: Experimental Design," Wiley., 1995.
[38] R. Tauler, B. Walczak, S. D. Brown, "Comprehensive chemometrics: chemical and biochemical data analysis," Elsevier., Vol. 1, 2009, ISBN: 978-0-444-52701-1.
[39] S. Battu, V. C. Guguloth, G. Raju, M. Basude, "Efficient, stable and reusable Bi2O3/ZrO2 catalyzed one-pot synthesis of 3, 4-dihydropyrimidi-2 (1H)-ones under solvent-free conditions," Int. J. Chem. Anal. Sci., Vol. 5, 2014.
[40] A. Wang, X. Liu, Z. Su, H. Jing, "New magnetic nanocomposites of ZrO2–Al2O3–Fe3O4 as green solid acid catalysts in organic reactions," Catal. Sci. Technol., Vol. 4, 2014, pp. 71-80.
[41] S. L. Jain, V. Prasad, B. Sain, "Alumina supported MoO 3: An efficient and reusable heterogeneous catalyst for synthesis of 3, 4-dihydropyridine-2 (1H)-ones under solvent free conditions," Catal. Commun., Vol. 9, 2008, pp. 499-503.
[42] K. Pourshamsian, "ZnO-NPs as an efficient reusable heterogeneous catalyst for synthesis of 1, 4-Dihydropyrimidine derivatives in solvent-free conditions," Int. J. Nano. Dimens., Vol. 6, 2015, pp. 99-104.