Synthesis of Nanostructured MnNiAPSO-34 Catalyst: Catalytic Properties and Performance
الموضوعات :
Parisa Sadeghpour
1
,
Mohammad Haghighi
2
1 - Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran.
Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, Sahand New Town, Tabriz,Iran
2 - Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran.
Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, Sahand New Town, Tabriz,Iran
تاريخ الإرسال : 23 الجمعة , ربيع الأول, 1435
تاريخ التأكيد : 14 الثلاثاء , رجب, 1435
تاريخ الإصدار : 02 الخميس , رجب, 1435
الکلمات المفتاحية:
MnNiAPSO-34,
Biomethanol,
Ethylene,
Propylene,
MTO,
ملخص المقالة :
Silicoaluminophosphate (SAPO-34) molecular sieve doped with transition metals, Mn and Ni, with different molar ratios (Mn/Ni=0.33, 3) were investigated for their activity, selectivity and lifetime in biomethanol to olefins reaction. MnNiAPSO-34 nanostructured catalyst was synthesized by hydrothermal method and addition of metals was carried out by isomorphous substitution into the crystalline framework of SAPO-34. The nanostructured catalysts were characterized by XRD, FESEM, PSD, EDX, BET and FTIR techniques. MnNiAPSO-34 nanostructured catalyst synthesized with high concentration of Mn, demonstrated larger crystallite size evidenced by XRD analysis. The FESEM results indicated that the concentration of metal ions could affect the morphology of nanostructured MnNiAPSO-34 catalyst due to different rate of crystal growth. The catalytic performance of samples was studied in biomethanol to olefins reaction at atmospheric pressure and GHSV of 4200 cm3/g.h-1 in a fixed bed reactor. MnNiAPSO-34 with high concentration of Mn illustrated higher selectivity toward light olefins and had longer lifetime for which the selectivity of light olefins for this nanostructured catalyst was 60% after 180 min time on stream.
المصادر:
D. Xiang, Y. Qian, Y. Man, S. Yang, “Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process”, App. Energy, Vol. 113, 2014, pp. 639-647.
H. Nabil, H. Ismail, A.R. Azura, “Optimisation of accelerators and vulcanising systems on thermal stability of natural rubber/recycled ethylene–propylene–diene-monomer blends”, Mater. Des., Vol. 53, 2014, pp. 651-661.
T. Alvaro-Munoz, C. Marquez-Alvarez, E. Sastre, “Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction”, Catal. Today, Vol. 179, 2012, pp. 27-34.
Y. K. Park, S. W. Baek, S. K. Ihm, “Effect of reaction conditions and catalytic properties on methanol conversion over SAPO-34”, J. Ind. Eng. Chem., Vol. 7, 2001, pp. 167-172.
Z. Liu, C. Sun, G. Wang, Q. Wang, G. Cai, “New progress in R&D of lower olefin synthesis”, Fuel Process. Technol., Vol. 62, 2000, pp. 161-172.
M. J. van Niekerk, J. C. Q. Fletcher, C. T. O'Connor, “Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34”, Appl. Catal., A, Vol. 138, 1996, pp. 135-145.
C. Li, X. Yuan, K. Fujimoto, “Development of highly stable catalyst for methanol synthesis from carbon dioxide”, Appl. Catal., A, Vol. 469, 2014, pp. 306-311.
A. García-Trenco, A. Martínez, “A simple and efficient approach to confine Cu/ZnO methanol synthesis catalysts in the ordered mesoporous SBA-15 silica”, Catal. Today, Vol. 215, 2013, pp. 152-161.
Z. Chu, H. Chen, Y. Yu, Q. Wang, D. Fang, “Surfactant-assisted preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis from syngas”, J. Mol. Catal. A: Chem., Vol. 366, 2013, pp. 48-53.
Y. Chen, Y. Wu, L. Tao, B. Dai, M. Yang, Z. Chen, X. Zhu, “Dehydration reaction of bio-ethanol to ethylene over modified SAPO catalysts”, J. Ind. Eng. Chem., Vol. 16, 2010, pp. 717-722.
B. Vora, J.Q. Chen, A. Bozzano, B. Glover, P. Barger, “Various routes to methane utilization—SAPO-34 catalysis offers the best option”, Catalysis today, Vol. 141, 2009, pp. 77-83.
M. S. Souza, E. C. G. Aguieiras, M. A. P. da Silva, M. A. P. Langone, “Biodiesel synthesis via esterification of feedstock with high content of free fatty acids”, Applied biochemistry and biotechnology, Vol. 154, 2009, pp. 74-88.
S. Wang, L. Baxter, F. Fonseca, “Biomass fly ash in concrete: SEM, EDX and ESEM analysis", Fuel, Vol. 87, 2008, pp. 372-379.
T. Dogu, D. Varisli, “Alcohols as alternatives to petroleum for environmentally clean fuels and petrochemicals”, Turkish Journal of Chemistry, Vol. 31, 2007, pp. 551.
V. Hulea, E. Huguet, C. Cammarano, A. Lacarriere, R. Durand, C. Leroi, R. Cadours, B. Coq, “Conversion of methyl mercaptan and methanol to hydrocarbons over solid acid catalysts – A comparative study”, Appl. Catal., B, Vol. 144, 2014, pp. 547-553.
L. Wu, Z. Liu, L. Xia, M. Qiu, X. Liu, H. Zhu, Y. Sun, “Effect of SAPO-34 molecular sieve morphology on methanol to olefins performance”, Chin. J. Catal., Vol. 34, 2013, pp. 1348-1356.
S. Tian, S. Ji, D. Lü, B. Bai, Q. Sun, “Preparation of modified Ce-SAPO-34 catalysts and their catalytic performances of methanol to olefins”, J. Energy Chem., Vol. 22, 2013, pp. 605-609.
T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, “Effect of silicon content on the catalytic behavior of chabazite type silicoaluminophosphate in the transformation of methanol to short chain olefins”, Catal. Today, Vol. 213, 2013, pp. 219-225.
T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, “Enhanced stability in the methanol-to-olefins process shown by SAPO-34 catalysts synthesized in biphasic medium”, Catal. Today, Vol. 215, 2013, pp. 208-215.
D. Chen, K. Moljord, A. Holmen, “A Methanol to Olefins Review: Diffusion, Coke Formation and Deactivation on SAPO type catalysts”, Microporous and mesoporous materials, Vol. 3, 2012,
pp. 23-39.
K. Y. Lee, H. J. Chae, S. Y. Jeong, G. Seo, “Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions”, Applied Catalysis A: General, Vol. 369, 2009, pp. 60-66.
A. Izadbakhsh, F. Farhadi, F. Khorasheh, S. Sahebdelfar, M. Asadi, Y.Z. Feng, “Effect of SAPO-34's composition on its physico-chemical properties and deactivation in MTO process”, Appl. Catal., A, Vol. 364, 2009, pp. 48-56.
M. Stocker, “Methanol-to-hydrocarbons: catalytic materials and their behavior”, Microporous Mesoporous Mater., Vol. 29, 1999, pp. 3-48.
M. Kang, “Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s) ”, J. Mol. Catal. A: Chem., Vol. 160, 2000, pp. 437-444.
F. C. Sena, B. F. de Souza, N. C. de Almeida, J.S. Cardoso, L.D. Fernandes, “Influence of framework composition over SAPO-34 and MeAPSO-34 acidity”, Appl. Catal., A, Vol. 406, 2011, pp. 59-62.
N. Z. Rajic, “Open-framework aluminophosphates: synthesis, characterization and transition metal modifications”, J. Serb. Chem. Soc., Vol. 70, 2005, pp. 371-391.
L. Xu, Z. Liu, A. Du, Y. Wei, Z. Sun, “Synthesis, characterization, and MTO performance of MeAPSO-34 molecular sieves”, Studies in surface science and catalysis, Vol. 147, 2004, pp. 445-450.
M. Hartmann, L. Kevan, “Substitution of transition metal ions into aluminophosphates and silicoaluminophosphates: characterization and relation to catalysis”, Res. Chem. Intermed., Vol. 28, 2002, pp. 625-695.
G. Back, Y. Kim, Y.S. Cho, Y.I. Lee, C.W. Lee, “Comparative Evaluation of Mn (II) Framework Substitution in MnAPSO-34 and Mn-Impregnated SAPO-34 Molecular Sieves Studied by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopy”, Journal of the Korean Magnetic Resonance Society, Vol. 6, 2002, pp. 20-37.
M. Salmasi, S. Fatemi, A. Taheri Najafabadi, “Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates”, J. Ind. Eng. Chem., Vol. 17, 2011, pp. 755-761.
D. R. Dubois, D. L. Obrzut, J. Liu, J. Thundimadathil, P. M. Adekkanattu, J. A. Guin, A. Punnoose, M.S. Seehra, “Conversion of methanol to olefins over cobalt-, manganese-and nickel-incorporated SAPO-34 molecular sieves”, Fuel Process. Technol., Vol. 83, 2003, pp. 203-218.
M. Kang, C. T. Lee, “Synthesis of
Ga-incorporated SAPO-34s (GaAPSO-34) and their catalytic performance on methanol conversion”, J. Mol. Catal. A: Chem., Vol. 150, 1999, pp. 213-222.
D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B.L. Su, Z. Liu, “MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins”, Microporous Mesoporous Mater., Vol. 116, 2008, pp. 684-692.
Y. Wei, Y. He, D. Zhang, L. Xu, S. Meng, Z. Liu, B.L. Su, “Study of Mn incorporation into SAPO framework: Synthesis, characterization and catalysis in chloromethane conversion to light olefins”, Microporous Mesoporous Mater., Vol. 90, 2006, pp. 188-197.
M. Inoue, P. Dhupatemiya, S. Phatanasri, T. Inui, “Synthesis course of the Ni-SAPO-34 catalyst for methanol-to-olefin conversion”, Microporous Mesoporous Mater., Vol. 28, 1999, pp. 19-24.
T. Inui, M. Kang, “Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion”, Appl. Catal., A, Vol. 164, 1997, pp. 211-223.
S. Hotevar, J. Levec, “Acidity and catalytic activity of McAPSO-34 (Me = Co, Mn, Cr), SAPO-34, and H-ZSM-5 molecular sieves in methanol dehydration”, J. Catal., Vol. 135, 1992, pp. 518-532.
F. Rahmani, M. Haghighi, P. Estifaee, “Synthesis and characterization of Pt/Al2O3–CeO2 nanocatalyst used for toluene abatement from waste gas streams at low temperature: Conventional vs. plasma–ultrasound hybrid synthesis methods”, Microporous Mesoporous Mater., Vol. 185, 2014, pp. 213-223.
S. Allahyari, M. Haghighi, A. Ebadi, S. Hosseinzadeh, “Ultrasound Assisted
Co-Precipitation of Nanostructured CuO-ZnO-Al2O3 over HZSM-5: Effect of Precursor and Irradiation Power on Nanocatalyst Properties and Catalytic Performance for Direct Syngas to DME”, Ultrason. Sonochem., Vol. 21, 2014, pp. 663-673.
S. Aghamohammadi, M. Haghighi, M. Charghand, “Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance”, Mater. Res. Bull., Vol. 50, 2014,
pp. 462-475.
Y. Vafaeian, M. Haghighi, S. Aghamohammadi, “Ultrasound Assisted Dispersion of Different Amount of Ni over ZSM-5 Used as Nanostructured Catalyst for Hydrogen Production via CO2 Reforming of Methane”, Energy Convers. Manage., Vol. 76, 2013, pp. 1093-1103.
S. M. Sajjadi, M. Haghighi, A. Alizadeh Eslami, F. Rahmani, “Hydrogen Production via CO2-Reforming of Methane over Cu and Co Doped Ni/Al2O3 Nanocatalyst: Impregnation vs. Sol-Gel Method and Effect of Process Conditions and Promoter”, J Sol-Gel Sci Technol, Vol. 67, 2013,
pp. 601-617.
N. Asgari, M. Haghighi, S. Shafiei, “Synthesis and Physicochemical Characterization of Nanostructured CeO2/Clinoptilolite for Catalytic Total Oxidation of Xylene at Low Temperature”, Environ. Prog. Sustain. Energy., Vol. 32, 2013, pp. 587-597.
S. M. Alwahabi, G. F. Froment, “Single event kinetic modeling of the methanol-to-olefins process on SAPO-34", Ind. Eng. Chem. Res., Vol. 43, 2004, pp. 5098-5111.
A. T. Najafabadi, S. Fatemi, M. Sohrabi, M. Salmasi, “Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst”, J. Ind. Eng. Chem., Vol. 4, 2011, pp. 43-58.
N. Fatourehchi, M. Sohrabi, S. J. Royaee, S. M. Mirarefin, “Preparation of SAPO-34 catalyst and presentation of a kinetic model for methanol to olefin process (MTO) ”, Chem. Eng. Res. Des., Vol. 89, 2011, pp. 811-816.