Structural, Optical and Ultra-Violet Photodetection Properties of ZnO Nanorods with Various Aspect Ratios
الموضوعات :Saeed Safa 1 , Elham Hasani 2 , Majid Zareh 3
1 - Young researchers and elite groups
2 - Physics department, Karaj-branch, Islamic Azad University, Karaj, Iran
3 - Physics department, Karaj-branch, Islamic Azad University, Karaj, Iran
الکلمات المفتاحية: ZnO nanorod, Optical characteristics, ultra-violet photodetection,
ملخص المقالة :
ZnO nanorods with various lengths were synthesized by a two-stage route (by changing the time of growth between 0-240 min) and were characterized using XRD, SEM, UV–Vis and PL techniques. The SEM and XRD results confirmed a fast growth of (0 0 2) plane in the preferential longitudinal orientation, in contrast to lateral growth and therefore, by increasing the time of hydrothermal growth, nanorods with higher aspect ratios are obtained. Naturally, by increasing the length of nanorods, not only the average transmittance in both near ultraviolet and visible ranges is decreased, but also the PL peaks are red-shifted and extinct. Finally, ultra-violet photodetection of the samples shows that higher active surface area (with respect to the time of growth) is appropriate for photo-induced interactions leading to higher UV-sensitivity.
[1] A. Janotti, C.G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor", Rep. Prog. Phys., Vol. 72, 2009, pp. 126501.
[2] V. Srikant, V. Sergo, D. R. Clarke, "Epitaxial Aluminum-Doped Zinc Oxide Thin Films on Sapphire: I, Effect of Substrate Orientation", J. Am. Ceram. Soc., Vol. 78, 1995, pp.1931-1934.
[3] Y. Ryu, T. S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, C.J. Youn, "Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes", Appl. Phys. Lett., Vol. 88, 2006, pp. 241108-241108.
[4] H. Fu, T. Xu, S. Zhu, Y. Zhu, "Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60", Environ. Sci. Technol., Vol. 21, 2008, pp. 8064.
[5] M. Mehrabian, R. Azimirad, K. Mirabbaszadeh, H. Afarideh, M. Davoudian, "UV detecting properties of hydrothermal synthesized ZnO nanorods." Physica E, Vol. 43, 2011, pp. 1141-1145
[6] Y. Liu, H. Lv, S. Li, X. Xing, G. Xi, "Preparation and photocatalytic property of hexagonal cylinder-like bipods ZnO microcrystal photocatalyst", Dyes Pigm., Vol. 95, 2012, pp. 443-449.
[7] J.H. Bang, S. Kenneth, "Applications of ultrasound to the synthesis of nanostructured materials", Adv. Mater., Vol. 22, 2010, pp.1039-1059.
[8] O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, "Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria", J. Phys. D: Appl. Phys., Vol. 22, 2009, pp. 225-305.
[9] J. Zhang, Y. Su, H. Wei, J. Wang, C. Zhang, J. Zhao, Z. Yang, M. Xu, L. Zhang, Y. Zhang, "Double-nucleation hydrothermal growth of dense and large-scale ZnO nanorod arrays with high aspect ratio on zinc substrate for stable photocatalytic property", Mater. Lett., Vol. 107, 2013, pp. 251.
[10] W. Park, D. Hl Kim, S.W. Jung, G.C. Yi,"Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods", Appl. Phys. Lett., Vol. 80, 2002, pp. 4232.
[11] Q. X. Zhao, P. Klason, M. Willander, "Growth of nanostructures by vapor liquid solid method", Appl. Phys. A, Vol. 88, 2007, pp. 27-30.
[12] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport", Adv. Mater., Vol. 13, 2001, pp. 113-116.
[13] Y. Sun, G. M. Fuge, M. N. R. Ashfold, "Growth of aligned ZnO nanorods arrays by catalysis-free pulsed laser deposition methods", Chem. Phys. Lett., Vol. 396, 2004, pp. 21-26.
[14] J. Wu, S.C. Liu, "Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition", Adv .Mater., Vol. 14, 2002, pp.215-218.
[15] W.I. Park, D.H. Kim, S.W. Jung G.C. Yi, "Metalorganic vapor-phase epitaxial growth of vertically well aligned ZnO nanorods", Appl. Phys. Lett., Vol. 80, 2002, pp.4232-4234.
[16] H.D. Yu, Z.P. Zhang, M.Y. Han, X.T. Hao, F.R. Zhu, "A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays", J. Am. Chem. Soc., Vol. 127, 2005, pp. 2378-2379.
[17 ] J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, L. Vayssieres, "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications, Nanotechnol.", Vol. 19, 2006, pp. 4995.
[18] M.A. Abbasi, Y. Khan, S. Hussain, O. Nur, M. Willander, "Anions effect on the low temperature growth of ZnO nanostructures", J. Vac., Vol. 86, 2012, pp.1998-2001.
[19] B.J. Lawrie, R.F. Haglund, R. Mu, "Enhancement of ZnO photoluminescence by localized and propagating surface plasmons", Opt. Express, Vol. 17, 2009, pp. 2565-2572.
[20] A. Bakin, A. El-Shaer, A. Che Mofor, M. Kreye, A. Waag, F. Bertram, J. Christen, M. Heuken, J. Stoimenos, "MBE growth of ZnO layers on sapphire employing hydrogen peroxide as an oxidant", J. Cryst. Growth, Vol. 287, 2006, pp.7-11.
[21] O. Akhavan, R. Azimirad, S. Safa, M.M. Larijani, "Visible light photo-induced antibacterialactivity of CNT–doped TiO2 thin films with various CNT contents", J. Mater. Chem., Vol. 20, 2010, pp. 7386.
[22] S. Safa, A. Khayatian, E. Rokhsat, M. Najafi, "Investigation of Structural, Optical, and Photocatalytic Properties of Hydrothermally Synthesized ZnO Nanorod Arrays with Various Aspect Ratios", J. Adv. Mater. Proc., Vol. 20, 2016, pp. 51-64.