پیشبینی تغییرات مورفولوژی رودخانه سفید رود با استفاده از Arc GIS
الموضوعات :عقیل مددی 1 , طیبه بابایی اولم 2 , علیرضا قدرتی 3
1 - استاد، گروه جغرافیای طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
2 - دانشجوی دکتری، گروه جغرافیای طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
3 - بخش تحقیقات جنگلها، مراتع و آبخیزداری، مرکز تحقیقات کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران.
الکلمات المفتاحية: زنجیره مارکف, سفیدرود, مدل سلولهای اتوماتیک, مطالعات سنجش از دور,
ملخص المقالة :
با توجه به رویدادهای سیل بهویژه برای سکونتگاهها پیرامون رودخانهها، عدم اطلاع صحیح از تغییرات متوالی بستر رودخانه و جابجایی آن در سالهای آتی یکی از مسایل مهم علمی آبخیزداری میباشد از اینرو به دلیل اطلاعات ناکافی از رفتار رودخانهها، سکونتگاههای حاشیه رودخانههای مناطق ساحلی دائماً دچار آسیب هستند. محدوده مورد بررسی این تتحقیق از مرز کنیک کوهستان تا جلگه میباشد. هدف از این پژوهش پیشبینی تغییرات مورفولوژی رودخانه (عرض کانال و اندازهگیری پیچانرودی و ضریب خمیدگی رودخانه) در مناطق ساحلی شمال کشور از طریق روشهای تلفیقی سنجش از دور با مدل سلولهای اتوماتیک وزنجیره مارکوف است. سفیدرود به عنوان بزرگترین و مهمترین رودخانه سواحل جنوب دریای خزر نقش مهمی در زندگی، فعالیتها و سرمایههای انسانی منطقه دارد. عوامل مورفولوژیک رودخانه و محیطهای پیرامون آن و پیشبینی شرایط آینده میتواند در برنامهریزی و آمایش دشتهای ساحلی موثر و ضروری واقع شود. در این پژوهش از تصاویر ماهوارهای لندست 5، 7 و 8 سالهای، 2002،1987 و 2018، همراه با دادههای تغییرات تراز دریای خزر و دبی سفیدرود، بررسیهای میدانی و نرم افزارهای Envi 5.3، ArcGIS 10.4.1 و Idrisi TerrSet به عنوان ابزار تحقیق بهره گرفته شد. ابتدا مقادیر احتمال تبدیل کاربری اراضی در سال 2018 بر مبنای مدل تلفیقی زنجیره مارکوف و سلولهای خودکار بهدست آمد. نتایج نشان داد که مدل تلفیقی، دارای دقت و صحت بالایی جهت پیشبینی الگوی آینده است. سپس با توجه به دقت و صحت خروجی مدل، نقشه پیشبینی کاربری اراضی و مورفولوژی رودخانه برای سال 2030 تهیه شد. با برازش دو نقشه سال 2018 و پیشبینی 2030 تغییرات محتمل در محیط رودخانه بهدست آمد و در چهار محدوده مورد تحلیل قرار گرفت. در نهایت با استفاده از دادههای تغییرات تراز دریای خزر و دبی سالانه رودخانه سفیدرود، روند تغییرات و پیشبینی مدل، مورد بررسی قرار گرفت. بیشترین احتمال تغییرات بر اثر تاسیسات ساخت انسان میباشد. فرایندهای فرسایشی، تغییر پیچانرودی و سیلگیری در حد فاصل سد سنگر تا روستای لومان بصورت جابجایی جانبی کانال و تشدید پیچانرودی، روستای کیسم و شهر آستانه اشرفیه و آزادسرا تا لیچاه بصورت سیلگیری تاسیسات انسانی و در محدوده کیاشهر، تالاب بوجاق و دلتای سفیدرود بصورت تغییر موقعیت مصب و جابجایی به غرب کانال رودخانه میباشد، با توجه به نتایج بررسی مقطع عرضی کانال رودخانه در سه دوره 1987، 2002 و 2018، روند کاهشی عرض کانال رخ داده است.
ارشد، صالح؛ مرید، سعید؛ میرابوالقاسمی، هادی (1386). بررسی روند تغییرات مورفولوژیکی رودخانهها با استفاده از سنجش از دور: مطالعۀ موردی رودخانۀ کارون از گتوند تا فارسیات (82-1369). مجله علوم کشاورزی و منابع طبیعی. 14 (6)، 180-194.
اصغری سراسکانرود، صیاد؛ پوراحمد، مهدی (1394). ناسایی و استخراج تغییرات رودخانهی زرینهرود در فاصلهی سالهای 1989 تا 2014 با استفاده از پردازش تصاویر ماهوارهای. هیدروژئومورفولوژی. 2 (5)، 16-1.
برخورداری، جلال؛ خسروشاهی، محمد (1386). بررسی اثر تغییرات پوشش اراضی و اقلیم بر جریان رودخانه (مطالعه موردی: حوضه آبخیز میناب). پژوهش و سازندگی. 20 (4)، 199-191.
اقتصادی، شهمیر؛ زاهدی، رفیعه (1390). مطالعه عوامل تاثیرگذار بر نوسانات تراز آب خزر جنوبی. علوم و فنون دریایی. 10 (3)، 13-4.
جواهری طهرانی، محسن؛ موسوی، سید فرهاد؛ حسینی، خسرو (1395). مطالعه ریختشناسی پیچان رودها با جریان کنترل شده با استفاده از تکنیکهای RS و GIS (مطالعه موردی: رودخانه زایندهرود در پاییندست سد زایندهرود). مجله علوم آب و خاک. 20 (77)، 44-25.
حافظی مقدس، ناصر و دیگران (1391). مطالعه ژئومورفولوژی مهندسی رودخانه سیستان. زمینشناسی کاربردی. 8 (1)، 18-1.
رنگزن، کاظم؛ صالحی، بهرام؛ سلحشوری، پروین (1387، اردیبهشت). بررسی تغییرات منطقه پاییندست سد کرخه قبل و بعد از ساخت سد با استفاده از تصاویر چند زمانه Land Sat. چهارمین همایش ژئوماتیک 87. تهران، سازمان نقشه برداری کشور.
سیف، عبدالله؛ نجمی، نجمه (1392). بارزسازی تغییرات پیچان رودهای کارون با استفاده از تصاویر چندزمانه IRS و Landsat. فصلنامۀ تحقیقات جغرافیایی. 60 (28)، 226-211.
پیروزی، الناز؛ مددی، عقیل؛ اصغریسراسکانرود، صیاد (1399). بررسی تغییرات هیدرولوژیکی و مورفولوژیکی رودخانه گیویچای ناشی از احداث سد گیوی. جغرافیا و توسعه. 18 (61)، 58-29.
غفاری، سارا؛ قریشی نجفآبادی، سید حسین؛ مجدزاده طباطبایی، محمدرضا (1401). بررسی تغییرات ریختشناسی مصبها (شبیهسازی عددی رودخانه شلمانرود با نرمافزار MIKE21). مدیریت آب و آبیاری. 12 (3)، 560-541.
میرزاییزاده، وحید؛ نیکنژاد، مریم؛ اولادی قادیکلایی، جعفر (1401). ارزیابی الگوریتمهای طبقه بندی نظارت شده غیرپارامتریک در تهیه نقشه پوشش زمین با استفاده از تصاویر لندست 8. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی. 6 (3)، 44-29.
عابدینی، موسی؛ بلواسی، ایمانعلی؛ نظافت تکله، بهروز (1401). ارزیابی تغییرات مورفولوژیکی رودخانه با استفاده از برازش دایرههای مماس در محیط GIS (مطالعه موردی: رودخانه کهمان الشتر). مطالعات علوم محیط زیست. 7 (4)، 5581-5571.
عطایی، سهیل و دیگران (1395). تاثیر نوسانات تراز آب دریا بر تغییرات خطوط ساحلی دریای خزر. نشریه مهندسی دریا. 12 (24)، 113-103.
عبدالهی باغسیاهی، علی؛ حشمتیان، رضا؛ سویزی، مهدی (1397، بهمن). پهنه بندی سیلاب ابراهه اصلی ساحل مکران با تلفیق مدل HEC-RAS&GIS رودخانه باهو کلات. یازدهمین سمینار بین المللی مهندسی رودخانه. اهواز. ایران.
هلالات ناصریان، حسین و دیگران (1392، آبان). مدلسازی جامع سیلاب منطقه دشتیاری شهرستان چابهار توسط مدل MIKE FLOOD و ارائه طرح علاج بخشی سیل در منطقه. دوازدهمین کنفرانس هیدرولیک ایران. کرج. ایران.
معصومی، حمیدرضا؛ غریب رضا، محمدرضا؛ معتمد، احمد (1389). بررسی مورفولوژی و الگوی پیچانرودی رودخانه زهره در جلگه ساحلی هندیجان. مهندسی و مدیریت آبخیز. 3 (2)، 111-102.
عبدالهی کاکرودی، عطااله (1392). نوسانات دریای خزر و تاثیر آن بر سواحل جنوب شرقی آن. پژوهشهای ژئومورفولوژی کمی. 2 (3)، 44-33.
جداری عیوضی، جمشید؛ یمانی، مجتبی، خوش رفتار، رضا (1384). تکامل ژئومرفولوژی دلتای رود سپیدرود درکواترنر. پژوهشهای جغرافیایی. 37 (53)، 20-99.
شرفی، سیامک؛ آرینتبار، حبیب؛ کمالی، زهرا (1401). بررسی تغییرات مکانی- زمانی مورفولوژی رودخانه سیالخور در استان لرستان. پژوهشهای ژئومورفولوژی کمی. 8 (3)، 131-115.
کیانپور کل خواجه، محمد؛ پژوهش، مهدی؛ امام قلیزاده، صمد (1401). ارزیابی مدل تلفیقی زنجیره مارکوف و سلولهای خودکار در شبیهسازی تغییرات کاربری و پوشش اراضی سد گتوند. نشریه آب و توسعه پایدار. 9 (2)، 56-47.
Pal, M. & Mather, P.M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing. 26 (5), 1007-1011.
Muller, M.R. & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, and Canada. Landscape Ecology. 9, 151-157.
Morais, E.S.; Rocha, P.C. & Hooke, J. (2022). Spatio-temporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River, Brazil. Geomorphology. 273, 348-360.
Subedi, P.; Subedi, K. & Thapa, B. (2013). Application of a hybrid cellular Automaton Markov (CA-Markov) model in land-use change prediction: A case study of saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences. 16, 126-132.
Mondal, S. et al (2020). Cellular automata (CA) contiguity filters impacts on CA Markov modelling of land use land cover change predictions results. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLIII (B3), 1585–1591.
Medel, I.D.; Stubblefield, A.P. & Shea C. (2020). Sedimentation and erosion patterns within anabranching channels in a lowland river restoration project. International Journal of River Basin Management. 20 (1), 1-34. DOI: 10.1080/15715124.2020.1809435.
Janes, V.J.J. et al (2017). Analysis of fundamental physical factors influencing channel bank erosion: results for contrasting catchments in England and Wales. Environmental Earth Science.76 (307), 1-18. DOI: 10.1007/s12665-017-6593-x.
Kondolf, G.M. et al (2016). Geomorphic classification of rivers and streams. Chapter 7. Tools in Fluvial Geomorphology. London: Wiley. 169-202. DOI: 10.1002/9781118648551.ch7.
Bravard J.P. & Petit, F. (2009). Geomorphology of streams and rivers. Encyclopedia of Inland Waters. 387-95. United States: Academic Press. DOI: 10.1016/B978-012370626-3.00043-0.
Khoshravan, H. et al (2020). Effects of the Caspian Sea water level change on Boujagh National Park. southwest the Caspian sea. Caspian J. Environ, Sci. 19 (2), 99-110.
Chen, J.L. et al (2017). Long-term Caspian Sea level change. Geophysical Research Letters. 44 (13), 6993- 7001. 10.1002/2017GL073958.
Zhang, F. et al (2015). Spatio-temporal patterns of land use/cover changes over the past 20 years in the middle reaches of the Tarim River, Xinjiang, China. Land Degradation and Development. 26 (3), 284- 299.
Sang, L. et al (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling. 54 (3-4), 883-848. DOI: 2002022/j.mcm.10200220028.
Shumona, A.; Kutub Uddin, E. & Shakibul, I. (2023). Predicting spatiotemporal changes of channel morphology in the reach of Teesta River. Bangladesh using GIS and ARIMA modeling. Quaternary International. 513 (1), 80-94.
Langat, P.K.; Kumar, L. & Koech, R. (2019). Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology. 325 (1-3), 92-102.
_||_