Lifting Elements in Coherent Quantales
الموضوعات : Transactions on Fuzzy Sets and Systems
1 - Department of Computer Science, Faculty of Mathematics and Informatics, Bucharest University, Bucharest, Romania.
الکلمات المفتاحية: Coherent quantale, Reticulation of a quantale, Boolean Lifting Property, Lifting ideals,
ملخص المقالة :
An ideal I of a ring R is a lifting ideal if the idempotents of R can be lifted modulo I. A rich literature has been dedicated to lifting ideals. Recently, new algebraic and topological results on lifting ideals have been discovered. This paper aims to generalize some of these results to coherent quantales. We introduce the notion of lifting elements in a quantale and a lot of results about them are proven. Some properties and characterizations of a coherent quantale in which any element is a lifting element are obtained. The formulations and the proofs of our results use the transfer properties of reticulation, a construction that assigns to each coherent quantale a bounded distributive lattice. The abstract results on lifting elements can be applied to study some Boolean lifting properties in concrete algebraic structures: commutative rings, bounded distributive lattices, residuated lattices, MV-algebras, BL-algebras, abelian l-groups, some classes of universal algebras, etc.
[1] M. Aghajani and A. Tarizadeh, Characterization of Gelfand rings, specially of clean rings and their dual rings, Results Math., 75(3) (2020) 75-125.
[2] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publ. Comp., (1969).
[3] R. Balbes and Ph. Dwinger, Distributive Lattices, Univ. of Missouri Press, (1974).
[4] B. Banaschewski, Gelfand and exchange rings: Their spectra in point free topology, Arab. J. Sci. Eng., 25(2C) (2000), 3-22.
[5] B. Barania Nia and A. Borumand Saeid, Classes of pseudo BL-algebras in view of right Boolean lifting property, Transactions of A. Razmadze Mathematical Institute, 172 (2018), 146-163.
[6] B. Barania Nia and A. Borumand Saeid, Study of pseudo BL-algebras in view of right Boolean lifting property, Appl. Appl. Math., 13(1) (2018), 354-381.
[7] G. Birkhoff, Lattice Theory, AMS Collocquium Publ., (1967).
[8] D. Cheptea, Lifting properties in classes of universal algebras, Ph. D. Thesis, In preparation.
[9] D. Cheptea, G. Georgescu and C. Muresan, Boolean lifting properties for bounded distributive lattices, Sci. Ann. Comput. Sci., 25 (2015), 29-67.
[10] D. Cheptea and G. Georgescu, Boolean lifting properties in quantales, Soft Computing, 24 (2020), 1-13.
[11] T. Demba, On the hull-kernel and inverse topology on frames, Algebra Universalis, 70 (2013), 197-212.
[12] M. Dickmann, N. Schwarz and M. Tressl, Spectral Spaces, Cambridge University Press, (2019).
[13] P. Eklund, J. G. Garcia, U. Hohle and J. Kortelainen, Semigroups in Complete Lattices: Quantales, Modules and Related Topics, Springer USA, (2018).
[14] A. Facchini, C. A. Pinocchiaro and G. Janelidze, Abstractly constructed prime spectra, Algebra Universalis, 83(8) (2022). Available online: https://doi.org/10.107/s00012-021-00764-z.
[15] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Structural Logics, Studies in Logic and The Foundation of Mathematics, 151, Elsevier, USA, (2007).
[16] G. Georgescu, The reticulation of a quantale, Rev. Roumaine Math. Pures Appl., 40(7-8) (1995), 619-631.
[17] G. Georgescu, D. Cheptea and C. Muresan, Algebraic and topological results on lifting properties in residuated lattices, Fuzzy Sets Systems, 271 (2015), 102-132.
[18] G. Georgescu, L. Leustean and C. Muresan, Maximal residuated lattices with lifting Boolean center, Algebra Universalis, 63 (2010), 83-99.
[19] G. Georgescu and C. Muresan, Boolean lifting property for residuated lattices, Soft Computing, 18 (2014), 2075-2089.
[20] G. Georgescu and C. Muresan, Congruence Boolean Lifting Property, J. Multiple-valued Logic and Soft Computing, 29 (2017), 225-274.
[21] G. Georgescu and C. Muresan, Factor Congruence Lifting Property, Studia Logica, 225 (2017), 1079-2017.
[22] G. Georgescu, L. Kwuida and C. Muresan, Functorial properties of the reticulation of a universal algebra, J. Applied Logic, 8(5) (2021), 1123-1168.
[23] G. Georgescu, Some classes of quantale morphisms, J. Algebra Number Theory Appl., 24(2) (2021), 111-153.
[24] G. Georgescu, Flat topology on the spectra of quantales, Fuzzy Sets and Systems, 406 (2021), 22-41.
[25] G. Georgescu, Reticulation of a quantale, pure elements and new transfer properties, Fuzzy Sets and Systems, (2021). Available online: https://doi.org/10.1016/j.fss.2021.06.003.
[26] G. Georgescu, New results on Congruence Boolean Lifting Property, Journal of Algebraic Hyperstructures and Logical Algebras, 3(1) (2022), 15-34.
[27] A. W. Hager, C. M. Kimber and W. Wm McGovern, Clean unital l-groups, Math. Slovaca, 63 (2013), 979-992.
[28] M. Hochster, Prime ideals structures in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43-60.
[29] P. Jipsen, Generalization of Boolean products for lattice-ordered algebras, Annals Pure Appl. Logic, 161 (2009), 224-234.
[30] P. T. Johnstone, Stone Spaces, Cambridge University Press, (1982).
[31] A. J. de Jong et al., Stacs project. Available online: http://stacs.math.columbia.edu.
[32] N. A. Kermani, E. Eslami and A. Borumand Saeid, Central lifting property for orthomodular lattices, Math. Slovaca, 70(6) (2020), 1307-1316.
[33] L. Leustean, Representations of Many-valued Algebras, Editura Universitara, Bucharest, (2010).
[34] J. Martinez, Abstract ideal theory, Ordered Algebraic Structures, Lecture Notes in Pure and Appl. Math., 99, Marcel Dekker, New York, (1985).
[35] C. Muresan, Algebras of many-valued logic, Ph. D. Thesis, Bucharest University, (2009).
[36] W. K. Nicholson, Lifting idempotents and exchange rings, Transaction of A.M.S., 229 (1977), 278-288.
[37] J. Paseka, Regular and normal quantales, Arch. Math. (Brno), 22 (1996), 203-210.
[38] J. Paseka and J. Rosicky, Quantales, Current Research in Operational Quantum Logic : Algebras, Categories and Languages, Fund. Theories Phys, vol. 111, Kluwer Acad. Publ., Dordrecht, (2000), 245-262.
[39] J. Picado and A. Pultr, Frames and Locales: Topology without points, Frontiers in Mathematics, Springer, Basel, (2012).
[40] E. Rostami, S. Hedayat, S. Karimzadeh and R. Nekooei, Comaximal factorization of of lifting ideals, J. Algebra Appl., 19(1) (2021). Available online: https://doi.org/10.1142/S021949882250044x.
[41] K. I. Rosenthal, Quantales and Their Applications, Longman Scientific and Technical, (1989).
[42] H. Simmons, Reticulated rings, J. Algebra, 66 (1980), 169-192.
[43] A. Tarizadeh and P.K. Sharma, Structural results on lifting, orthogonality and finiteness of idempotents, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 116(1), 54 (2022).