Role of Relativistic Quantum Theory in Hadron Radiation Therapy
الموضوعات :Seyede Nasrin HoseiniMotlagh 1 , Neda Farhangkhah 2 , Mohammad Ghasemi Shabankareh 3
1 - Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
3 - Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
الکلمات المفتاحية: Laser, Tissues, Quantum, KEYWORDS: carbon, proton, relativistic,
ملخص المقالة :
In recent years, the attention of scientists has been drawn to laser accelerators because they have a smaller size and more power than RT accelerators. But to upgrade these laser accelerators for hadron therapy, the theory governing these accelerators needs more investigation. The present paper represents the theory of laser-driven accelerators. Also, for the first time, we calculated the quantum relativistic important parameters such as the effective atomic number, z_eff, β=v⁄c , parameter, the density effect, δ⁄2, the shell effect,〖∆L〗_shell, Barkas effect, L_Barkas , Lynard Sorensen, effect, 〖∆L〗_LS, the standard perturbation function, L_stand, the first order general term of quantum perturbation theory, L_Pert, for proton and carbon beams in different energies versus the depth of penetration in the different human tissues using Maple programming, and our numerical results show that since the physical and chemical properties of carbon and hydrogen ions are not the same and carbon is heavier than hydrogen, carbon and hydrogen ion beams in hadron therapy do not have the same behavior inside the different human tissues.
[1] C.A. Tobias, H.O. Anger, and J.H. Lawrence, “Radiological use of high energy deuterons and alpha particles,” Am J Roentgenol Radium Ther Nucl Med, vol. 67, pp. 1–27, 1952.
[2] S.B. Curtis, “Plans for the high-energy, heavy-ion facility (BEVALAC) at Berkeley,” Eur J Cancer, vol. 10, pp. 388, 1974.
[3] J.R. Castro, J.M. Quivey, J.T. Lyman, G. Chen, T.L. Phillips, and C.A. Tobias, “Radiotherapy with heavy charged-particles at Lawrence Berkeley Laboratory,” J Can Assoc Radiol, vol. 31, pp. 30 - 4, 1980.
[4] H. Tsujii and T. Kamada, “A review of update: clinical results of carbon ion radiotherapy,” Jpn J Clin Oncol, vol. 42, pp. 670-685, 2012.
[5] T. Kanai, Y. Furusawa, K. Fukutsu, H. Itsukaichi, K. Eguchi-Kasai, and H. Ohara, “Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion radiotherapy.” Radiat Res, 147, pp. 78–85, 1997.
[6] N. Hamada, T. Imaoka, S. Masunaga, T. Ogata, R. Okayasu, A. Takahashi, T.A. Kato, Y. Kobayashi, T. Ohnishi, K. Ono, Y. Shimada, and T. Teshima, “Recent advances in the biology of heavy-ion cancer therapy.” J Radiat Res, 51, pp. 365–383, 2010.
[7] W.K. Weyrather, S. Ritter, M. Scholz, and G. Kraft, “RBE for carbon track-segment irradiation in cell lines of differing repair capacity,” Int J Radiat Biol, vol. 75, pp.1357–1364, 1999.
[8] T. Kanai, M. Endo, S. Minohara, N. Miyahara, H. Koyama-ito, H. Tomura, N. Matsufuji, Y. Futami, A. Fukumura, T. Hiraoka, Y. Furusawa, K. Ando, M, Suzuki, and F. Soga, “Biophysical characteristics of HIMAC clinical irradiation system for heavyion radiation therapy,” Int J Radiat Oncol Biol Phys, vol. 44, pp. 201–210, 1999.
[9] K. Ando and Y. Kase, “Biological characteristics of carbon-ion therapy,” Int J Radiat Biol, vol. 85, pp. 715–728, 2009.
[10] T. Ogata, T. Teshima, K. Kagawa, Y. Hishikawa, Y. Takahashi, A. Kawaguchi, Y. Suzumoto, K. Nojima, Y. Furusawa, and N. Matsuura, “Particle irradiation suppresses metastatic potential of cancer cells,” Cancer Res, vol. 65, pp. 113–120, 2005.
[11] HW. Lewis, “Multiple scattering in an infinite medium,” Phys Rev, vol. 78, pp. 526–535, 1950.
[12] VL. Highland, “Some practical remarks on multiple scattering,” Nucl Instrum Methods, vol. 129, pp. 497–506, 1975.
[13] B. Gottschalk, “On the scattering power of radiotherapy protons,” Med Phys, vol. 37, pp. 352–67,2010.
[14] S. G. Mashnik, K. K. Gudima, R. E. Prael, A. J. Sierk, M. I. Baznat, and N. V. Mokhov, “CEM03.03 and LAQGSM03.03 Event Generators for the MCNP6, MCNPX, and MARS15 Transport Codes,” February 4–8, ICTP, Trieste, Italy. arXiv:0805.0751, 2008.
[15] A.Ferrar and PR.Sala, “The physics of high energy reactions,” Proceed Workshop on Nucl. Reaction Data and Nuclear Reactor Physics, Design and Safety, Vol. 2, pp. 424–532, 1998.
[16] R.Serber, “Nuclear reactions at high energies,” Phys Rev, vol. 72, pp.1114–1119, 1947.
[17] H. W. Bertini, T. A. Gabriel, R. T. Santoro, 0. W. Hermann, N. M. rson, and J. M. Hunt, “HIC-1: A First Approach to the Calculation of Heavy-Ion Reactions at Energies50 MeV/Nucleon,” Oak Ridge: ORNL-TM-vol. 4134, pp. 1-54, 1974.
[18] JJ.Griffin, “Statistical model of intermediate structure,” Phys Rev Lett1, vol. 7, pp. 478–80, 1966,
[19] M. Blann, “Precompound analyses of spectra and yields following nuclear capture of stopped pi-,” Phys Rev, pp. 1648-1662, 1983.
[20] VF.Weisskopf, “Statistics and nuclear reactions,” Phys Rev, vol. 52, pp. 295–303, 1937.
[21] E.Fermi, “High energy nuclear events,” Progr Theor Phys, vol. 5, pp. 570–83, 1950.
[22] D.Cussol, “Nuclear Physics and Hadron Therapy,” La Colle sur Loup: Lectures at Ecole Joliot Curie, vol. 46, pp.1-47, 2011.
[23] E. Pedroni, S. Scheib, T. Böhringer, A. Coray, M. Grossmann, S. Lin, and A Lomax, “Experimental characterization and physical modelling of the dose distributionof scanned proton pencil beams,” Phys Med Biol, vol. 50, pp. 541–561, 2005.
[24] G. O Sawakuchi, U. Titt, D. Mirkovic, G. Ciangaru, X R. Zhu, N. Sahoo, M. T Gillin, and R. Mohan, “Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams,” Phys Med Biol, vol. 55, pp. 711–721, 2010.
[25] B. Gottschalk, Physics of proton interactions in matter, CRC Press, 2018.
[26] M. Krämer, M. Durante, “Ion beam transport calculations and treatment plansin particle therapy,” Eur Phys J D, vol. 60, pp. 195–202, 2010.
[27] C. Labaune, C. Baccou, S. Depierreux, C. Goyon, G. Loisel, V. Yahia, and J. Rafelski, “Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma,” Nature Communications, vol. 4, pp. 2506 (1-6), 2013.
[28] J. M. Martinez-Val, S. Eliezer, M. Piera, and G. Velarde, “Fusion burning waves in proton-boron-11 plasmas,” Phys. Lett. A, vol. 216, pp. 142-152, 1996.
[29] D. C. Moreau, “Potentiality of the proton-boron fuel for controlled thermonuclear fusion,” Nucl. Fusion, vol. 17, pp. 13-20, 1977.
[30] B. Levush and S. Cuperman, “On the potentiality of the proton-boron fuel for inertially confined fusion,” Nucl. Fusion, vol. 22, pp. 1519-1525, 1982.
[31] T. Kobayashi, Y. Sakurai, and M. Ishikawa, “A noninvasive dose estimation system for clinical BNCT based on PG-SPECT--conceptual study and fundamental experiments using HPGe and CdTe semiconductor detectors,” Med. Phys, vol. 27, pp. 2124-2132, 2000.
[32] D.Yoon, J.Jung, and T. Suha, “Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study,” APPLIED PHYSICS LETTERS, vol. 105, pp. 223507(1-12), 2014.
[33] L. Giuffrida, D. Margarone, G.A.P. Cirrone, A. Picciotto, and G. Korn, “Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron free nuclear reactions,” AIP ADVANCES, vol. 6, pp. 105204 (1-18), 2016.
[34] S.Eliezer, H. Hora, G.Korn, N.Nissim, and J. M.Martinez, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Physics of Plasmas, vol. 23, pp. 050704 (1-4), 2016.
[35] H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, Sh. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses,” Laser and Particle Beams, vol. 33, pp. 607–619, 2015.
[36] U. Amaldi and S. Braccini, “Present challenges in hadron therapy techniques,” Eur Phys J Plus, vol. 126, pp. 70-85, 2011.
[37] D. Schulz-Ertner, O. Jäkel, W. Schlegel, and W. Schlegel, “Radiation therapy with charged particles,” Semin Radiat Oncol, vol. 16, pp. 249-259, 2006.
[38] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 2nd Ed edition, 1990.
[39] F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim, 1986.
[40] W. D. Newhauser and R. Zhang, “The physics of proton therapy,” Physics in Medicine and Biology, vol. 60, pp. 155, 2015.
[41] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 2nd Ed edition, 1990.
[42] J. F. Ziegler, “The Stopping of Energetic Light Ions in Elemental Matter,” J.Appl. Phys/Rev. Appl.Phys, vol. 85, pp. 1249–1272, 1999.
[43] D. Schardt and T. Elsässer, “Heavy-ion tumor therapy: Physical and radiobiological benefits,” ReviewsofModernPhysics, vol. 82, pp. 383–425, 2010.
[44] A.C. Kraan, “Range Verification Methodsin Particle Therapy: Underlying Physicsand Monte Carlo Modeling,” Frontiers in Oncology, vol. 5, pp. 150-177, 2015.
[45] U. Fano, Penetration of protons, alpha particles and mesons, National Bureau of Standards, 1963.
[46] E. Fermi, “The Ionization Loss of Energy in Gases and in Condenses Materials,” Physical Review, vol. 57, pp. 485-493, 1940.
[47] U. Fano, “Penetration of Protons, Alpha Particles, and Mesons,” Annual Review of Nuclear Science, vol. 13, pp. 1-66, 1963.
[48] H. Bichsel, Passage of charged particles through matter, 3rd Ed, New York, McGraw-Hill, 1972.
[49] P. T. Leung, “Bethe stopping-power theory for heavy-target atoms,” Physical Review A, vol. 40, pp. 5417-5419, 1989.
[50] P.T. Leung, “Addendum: Bethe stopping-power theory for heavy-target atoms,” Physical Review A, vol. 60, pp. 2562-2564, 1999.
[51] B.A. Weaver and A.J. Westphal, “Energy loss of relativistic heavy ions in matter,” Nucl. Instrum. Methods Phys. Res. B, vol. 187, pp. 285-301, 2002.
[52] W.H. Barkas, J.N. Dyer, and H.H. Heckman, “Errata: Resolution of the Σ⁻-Mass Anomaly,” Physical Review Letters, vol. 11, pp. 138-145, 1963.
[53] F.M. Smith, W. Birnbaum, and W.H. Barkas, “Measurements of Meson Masses and Related Quantities,” Physical Review, vol. 91, pp. 765-766, 1953.
[54] W.H. Barkas, J.N. Dyer, and H.H. Heckman, “Resolution of the Σ⁻Mass Anomaly,” Physical Review Letters, vol. 11, pp. 26-28, 1963.
[55] R. Medenwaldt, S.P. Møller, E. Uggerhøj, and T. Worm, “Measurement of the stopping power of silicon for antiprotons between 0.2 and 3 MeV,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 58, pp. 1-5, 1991.
[56] J. Lindhard, “The Barkas Effect - or Z3, Z4-Corrections to Stopping of Swift Charged Particles,” Nuclear Instruments and Methods, vol. 132, pp. 1-5, 1976.
[57] F. Bloch, “Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie,” Annalen der Physik,vol. 16, pp. 285-320, 1933.
[58] S.P. Ahlen, “Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles,” Reviews of Modern Physics, vol. 52, pp. 121-173, 1980.
[59] S.P. Ahlen, “Calculation of the relativistic Bloch correction to stopping power,” Physical Review A, vol. 25, pp. 1856-1867, 1982.
[60] S.P. Ahlen and G. Tarlé, “Observation of Large Deviations from the Bethe-Bloch Formula for Relativisitic Uranium Ions,” Physical Review Letters, vol. 50, pp. 1110-1113, 1983.
[61] J. Lindhard, A.H. Sørensen, “Relativistic theory of stopping for heavy ions,” Physical Review A, vol. 53, pp. 2443-2456, 1996.
[62] S. Datz, H.F. Krause, C.R. Vane, H.V. Knudsen, P. Grafström, R.H. Schuch, “Effect of Nuclear Size on the Stopping Power of Ultrarelativistic Heavy Ions,” Physical Review Letter ,vol. 77, pp. 2925-2928, 1996.
[63] M.E. Rose, Relativistic Electron Theory, New York, Wiley, 1961.
[64] C.P. Bhalla and M.E. Rose, “Finite Nuclear Size Effects in β Decay,” Physical Review, vol. 128, pp. 774-778, 1962.
[65] E. Fermi, “The Ionization Loss of Energy in Gases and in Condensed Materials,” Phys. Rev. vol. 57, pp. 485-494,1940.
[66] M.J. Berger and S.M. Seltzer, “Tables of Energy Losses and Ranges of Electrons and Positrons,” Nasa Sp. Vol. 3012, pp. 1–134, 1964.
[67] DJ Thomas, “ICRU85. ICRU Report 85a - Fundamental Quantities And Units For Ionizing Radiation,” Journal of the ICRU, vol. 11, pp.1–35, 2011.
[68] Sh. Safaiean, M. Salehi Barough, and S. P. Shirmardi,"calculation of brain and thyroid radiation scattered absorbed dose due to proton therapy of eyes using MCNPX simulation code," New Cellular and Molecular Biotechnology Journal, vol. 10, pp. 29-40, 2020.
[69] T. Ohno, Y. Oshiro, M. Mizumoto, H. Numajiri, H. Ishikawa, T. Okumura, T. Terunuma, T. Sakae, and H. Sakurai, “Comparison of Dose-Volume Histograms Between Proton Beam and X-Ray Conformal Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer,” Journal of Radiation Research, vol. 56, pp. 128–133, 2015.
[70] R. Charles Nichols, S. N. Huh, R. H. Henderson, N. P. Mendenhall, S. Flampouri, Z. Li, H. J. D'Agostino, J. D. Cury, D. C. Pham, and B. S. Hoppe, “Proton Radiation Therapy Offers Reduced Normal Lung and Bone Marrow Exposure for Patients Receiving Dose-Escalated Radiation Therapy for Unresectable Stage III non-Small-Cell Lung Cancer: A Dosimetric Study,” Clin Lung Cancer, vol. 12, pp. 252-257, 2011.
[71] N. Kubo, J-i Saitoh, Hirofumi Shimada, Katsuyuki Shirai, Hidemasa Kawamura, T. Ohno, and T. Nakano, “Dosimetric Comparison of Carbon Ion and X-Ray Radiotherapy for Stage IIIA Non-Small Cell Lung Cancer,” J Radiat Res. Vol. 57, pp. 548–554, 2016.
[72] C. D. Schlaff, A. Krauze, A. Belard , J. J. Connell and K. A. Camphause ," Bringing the heavy: carbon ion therapy in the radiobiological and clinical context," Radiation Oncology, vol. 57, pp. 548–554, 2014.
[73] M. Ebrahimi Loushab, A.A. Mowlavi, M.H. Hadizadeh, R. Izadi, and S.B. Jia,“Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy” J Biomed Phys Eng. Vol. 5, pp. 169–176, 2015.
[74] H. Noshad, " Monte Carlo computation of dose deposited by
[75] carbon ions in radiation therapy," Iran. J. Radiat. Res. vol. 4, pp.115-120, 2006.
[76] X. Wang , X. Chen , G. Li , X. Han , T. Gao , W. Liu, and Xi. Tang," Application of Carbon Ion and Its Sensitizing Agent in Cancer Therapy: A Systematic Review," Frontiers in Oncolog, vol. 11, pp. 708724 (1-21), 2021.
[77] M. Rovituso and C. La Te," Nuclear interactions of new ions in cancer therapy: impact on
[78] dosimetry,"Transl Cancer Res. vol. 6, pp. 1-20, 2017.