Polypyrrole-Graphene Quantum dots Nanocomposite Layer for Detection of Uric Acid Using Plasmonic Sensor
الموضوعات :Amir Reza Sadrolhosseini 1 , Seyedeh Mehri Hamidi 2
1 - Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
2 - Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
الکلمات المفتاحية: Ascorbic acid, glucose, Uric acid, Surface plasmon resonance, polypyrrole-graphene quantum dots,
ملخص المقالة :
A polypyrrole-graphene quantum dots nanocomposite layer was prepared on the surface of the gold layer for detection of the uric acid using the surface plasmon resonance technique. The X-ray diffraction spectrum and the field emission scanning electron microscopy image for polypyrrole-graphene quantum dots layer confirmed the graphene quantum dots scattered on the surface of the polymer and the nanocomposite layer formed on the surface of thin gold layer in the thickness of 13.3 nm. The minimum concentration of uric acid that was detected by the sensing layer was about 1 ppm and the affinity constant of polypyrrole-graphene quantum dots for detection of uric acid was larger than the affinity constant for detection of ascorbic acid and glucose. The response of the polypyrrole-graphene quantum dots is larger than the response of polypyrrole for the detection of uric acid.
[1] H. K. Walker, W. D. Hall and J. W. Hurst, Clinical Methods: The History, Physical, and Laboratory Examinations, in Uric Acid 3rd Ed. Boston, Butterworths,1990.
[2] R. Barsoum and M. El-Khatib, “Uric acid and life on earth,” J Adv Res. Vol. 8, pp.471–474, 2017.
[3] J. Guo, “Uric Acid Monitoring with a Smartphone as the Electrochemical Analyzer,” Anal. Chem. Vol. 88, pp.11986–11989, 2016.
[4] Q. Yan, N. Zhi, L. Yang, G. Xu, Q. Feng, Q. Zhang, and S. Sun, “A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode,” Sci. Rep. vol.10, pp. 10607, 2020.
[5] J. Yang, Z. Huang, Y. Hu, J. Ge, J. Li, and Z. Li, “A facile fluorescence assay for rapid and sensitive detection of uric acid based on carbon dots and MnO2 nanosheets,” New J. Chem. Vol. 42. pp.15121-15126, 2018.
[6] N. A. Jamil, G. S. Mei, N. B. Khairulazdan, S. P. Thiagarajah, A. A. Hamzah, and B. Y. Majlis, “Detection of Uric Acid Using Kretschmann-based SPR Biosensor with MoS2-Graphene,” IEEE Xplore, pp.18671720 (1-4), 2019.
[7] R. Kant, R. Tabassum, and B. D Gupta, “Fiber optic SPR-based uric acid biosensor using uricase entrapped polyacrylamide gel,” IEEE Photon. Technol. Lett. Vol. 28, pp. 2050 - 2053, 2016.
[8] P.Kannan and S. A. John, “Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode,” Anal Biochem. Vol. 386, pp. 65-72, 2009.
[9] N. Stozhko, M. Bukharinova, L. Galperin, and K. Brainina, “A Nanostructured Sensor Based on Gold Nanoparticles and Nafion for Determination of Uric Acid,” Biosensors (Basel). vol 6, pp.1-13, 2018.
[10] Q. Dai, T. Wei, C. Lv, and F. Chai, “Facile preparation of Ag nanoparticles using uric acid and their applications in colorimetric detection and catalysis,” Anal. Methods. vol. 10. pp. 4518-4524, 2018.
[11] Y. Wang, L. Yu, Z. Zhu, J. Zhang, and J. Zhu. “Novel Uric Acid Sensor Based on Enzyme Electrode Modified by ZnO Nanoparticles and Multiwall Carbon Nanotubes,” Anal. Lett. Vol. 42, pp. 775-789, 2009.
[12] A. R. Sadrolhosseini, A. S. M. Noor, A. Bahrami, H.N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of Polypyrrole Multi-walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique,” PlosOne. Vol. 9, e93962 (1-10), 2014.
[13] A. R. Sadrolhosseini, S. Shafie, S. A. Rashid, and M. A. Mahdi, “Surface plasmon resonance measurement of arsenic in low concentration using polypyrrole-graphene quantum dots layer,” Measurement. Vol. 173, pp. 108546 (1-4), 2019.
[14] A. R. Sadrolhosseini, A. S. M. Noor, and M. M. Moksin, Application of Surface Plasmon Resonance Based on a Metal Nanoparticle in Plasmonics - Principles and Applications, K. Y. Kim, Ed. London: IntechOpen, 2012.
[15] G. Ruhi, O.P. Modi and S. K. Dhawan, “Chitosan-polypyrrole-SiO2 composite coatings with advanced anticorrosive properties,” Synth. Met. vol. 200. pp. 24-39, 2015.
[16] N. Hashemzadeh, M. Hasanzadeh, N. Shadjou, J. Eivazi-Ziaei, M. Khoubnasabjafari, and A. Jouyban, “Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma,” J. Pharm. Anal. Vol. 6, pp.235-241, 2016.
[17] S. Ramachandran, M. Sathishkumar, N. K. Kothurkar, and R. Senthilkumar, “Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite,” IOP Conf. Series: Mater. Sci. Eng. Vol. 310, pp. 012139 (1-9), 2018.
[18] K. D. Kowanga, E. Gatebe, G. O. Mauti, and E. M. Mauti, “Kinetic, sorption isotherms, pseudo first-order model and pseudo-second-order model studies of Cu (II) and Pb(II) using defatted Moringa oleifera seed powder,” J. Phytopharm, vol. 5, pp. 71-78, 2016.
[19] P. Moozarm Nia, W. P. Meng, and Y. Alias, “One-Step Electrodeposition of Polypyrrole-Copper Nano Particles for H2O2 Detection. J. Electrochem,” Soc. Vol. 163, pp. B8-B14, 2016.