ارائه مدلی جهت ارزیابی ریسکهای ایمنی به منظور افزایش مدیریت بهرهوری در پروژههای ساختمانی با بهکارگیری سیستم خبره فازی و الگوریتم ژنتیک
الموضوعات :مهدی وکیل زاده 1 , محسنعلی شایانفر 2 , مسعود ذبیحی سامانی 3 , مهدی روانشادنیا 4
1 - دانشجوی دکتری گروه مهندسی عمران، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشیار گروه مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران
3 - استادیار گروه مهندسی عمران، واحد پرند، دانشگاه آزاد اسلامی، تهران،ایران
4 - دانشیارگروه مهندسی عمران، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: الگوریتم ژنتیک, منطق فازی, سیستم خبره, مدیریت بهرهوری, ریسک ایمنی,
ملخص المقالة :
امروزه صنعت ساختمان سهم قابلتوجهی در اقتصاد دارد و بهعنوان صنعت پیشران و اشتغالزا محسوب میشود. با توجه به فعالیتهای متنوع و گاهی خطرآفرین در طول انجام عملیات ساختمانی، احتمال وقوع خطرات و آسیبهایی جانی و مالی وجود دارد که کنترل و کاهش این خطرات میتواند در موفقیت پروژه بسیار تأثیرگذار باشد. در پژوهش حاضر، مدلی جهت ارزیابی ریسکهای ایمنی پروژههای ساختمانی ارائه گردیده و از ابزارهای نو و قدرتمندی همچون سیستم خبره فازی بهبود یافته با الگوریتم ژنتیک بهره گرفته شده است. ازاینرو در ابتدا عوامل اصلی تأثیرگذار در ایمنی پروژههای ساختمانی با مطالعه پیشینة موضوع و مشاوره با افراد خبره به دست آمد. سپس پرسشنامهای جهت کسب نظرات خبرگان و جهت ارزیابی میزان شدت اثر ریسک و احتمال وقوع هر یک از ریسکها در اختیار خبرگان قرار گرفت. بر اساس نظرات خبرگان، سیستم خبرهای جهت ارزیابی ریسکها به دست آمد که بهجای استفاده از منطق صفر و یکی حاکم بر سیستمهای خبره، از منطق فازی استفاده گردیده است. در مدل پیشنهادی جهت بهبود عملکرد سیستم خبره فازی، از الگوریتم ژنتیک بهعنوان یک بهینهساز استفادهشده است. نتایج تحقیق حاکی از کارایی مطلوب مدل پیشنهادی در ارزیابی ریسکهای ایمنی پروژههای ساختمانی بوده، بهنحویکه میزان خطای مدل قابل قبول است. همچنین مدل میتواند ابزاری کارآمد برای مدیران پروژه در ارزیابی و پالایش وضعیت ایمنی در کارگاه ساختمانی را ارائه نماید. با افزایش ایمنی و سازماندهی آن، ریسک تعطیلی کارگاهها به علت فقدان ایمنی کم شده و مدیریت بهرهوری در کارگاههای ساختمانی افزایش مییابد.
Alipouri, Yaqub, Ardeshir, Abdullah, Sibt, Mohammad Hassan, Fazel Zarandi, Mohammad Hussein. (2015). Using fuzzy expert system and genetic algorithm to score safety management performance in Iranian construction workshops: a study of safety environment factors and personal experience. AmirKabir Civil Engineering Journal, 31.2(4.1), 31-39. [In persian]
Ardeshir Abdullah, Mohajeri Mehdi, Amiri Mehran. (2014). Safety assessment in construction projects based on gray hierarchical and fuzzy analysis methods. Occupational health in Iran, 2(11), 87-98. [In persian]
Asad, M. M., and Hasan, R., B. (2014). A Systematic Review: Development Techniques and Utilization of Expert Systems Inferences for Health and Safety Environment in Oil & Gas and Petroleum Industries. . In .: Malaysia University Conference Engineering Technology.
Baron, P., Brázda, P., Dobránsky, J., & Kočiško, M. (2012). Expert system approach to safety management. Risk Analysis,44(8), 77-88.
Center, S. a. (2019). Special issue of World Occupational Health and Safety Day. Tehran: Statistics and Strategic Information Center. [In persian]
Farmakis, P. M. (2018)). Genetic algorithm optimization for dynamic construction site layout planning. Organization, technology & management in construction: an international journal, 10(1), 1655-1664.
Hamidi, H. (1395). Optimization of TSK type fuzzy system rules database using hybrid heuristics algorithms. Computational Intelligence in Electrical Engineering, 7(3), 47-68.
Khanjani, H., & Saharnorchei, G. H. (2016). Safety hazards of construction workshops and the role of the Engineering System Organization in reducing accidents (with emphasis on Tehran province). Third National Conference on Crisis. [In persian]
Martinez-Aires, M. D., Lopez-Alonso, M., & Martinez-Rojas, M. (2018). Safety science. Building information modeling and safety management: A systematic review, 101, 11-18.
Omidi, L., Zakerian, S. A., Saraji, J. N. (2018). Safety performance assessment among control room operators based on feature extraction and genetic fuzzy system in the process industry. Process. Safety and Environmental Protection, 116, 590-602.
Oveysi Oskooi, Amir Hossein and Ravanshadnia, Mehdi. (2013). Application of simulation in multi-objective optimization of earth operations. 7th National Congress of Civil Engineering. Zahedan. [In persian]
Oveysi Oskooi, Amirhossein and Ravanshadnia, Mehdi and Harischian, Mahmoud,. (2016). Determining the optimal arrangement of the fleet of ground operations machinery using genetic algorithm. Fourth National Conference on Applied Research in Civil Engineering. [In persian]
Patel, D. A., & Jha, K. N. (2016). Structural equation modeling for relationship-based determinants of safety performance in construction projects. Journal of management in engineering, 32(6).
Sanchez, F. A. S., Peláez, G. I. C., & Alis, J. C.. (2017). Occupational safety and health in construction: a review of applications and trends. Industrial health, 55(3), 210-218.
Sunindijo, R. Y., & Zou, P. X.. (2011). Political skill for developing construction safety climate. Journal of Construction Engineering and Management, 138(5), 605-612.
Suokas, J., Heino, P., & Karvonen, I. (1990). Expert systems in safety management. Journal of occupational accidents, 12(1), 63-78.
Taghinejad, A. (2017). Evaluating the effect of safety management on improving the safety performance of construction workshops and providing appropriate solutions. Tabari Institute of Higher Education. [In persian]
Taherkhani Farhad, Mirza Ebrahim Tehrani Mahnaz, Malmasi Saeed. (2016). Assessing safety risks based on fuzzy logic in subway construction projects. Journal of Occupational Health Engineering, 4(3), 49-62.
Tang, K. H. D., Dawal, S. Z. M., & Olugu, E. U. (2018). Integrating fuzzy expert system and scoring system for safety performance evaluation of offshore oil and gas platforms in Malaysia. Journal of Loss Prevention in the Process Industries, 56, 32-45.
Zhou, Z. G. (2015). Overview and analysis of safety management studies in the construction industry. Safety science, 72, 337-350.
_||_Alipouri, Yaqub, Ardeshir, Abdullah, Sibt, Mohammad Hassan, Fazel Zarandi, Mohammad Hussein. (2015). Using fuzzy expert system and genetic algorithm to score safety management performance in Iranian construction workshops: a study of safety environment factors and personal experience. AmirKabir Civil Engineering Journal, 31.2(4.1), 31-39. [In persian]
Ardeshir Abdullah, Mohajeri Mehdi, Amiri Mehran. (2014). Safety assessment in construction projects based on gray hierarchical and fuzzy analysis methods. Occupational health in Iran, 2(11), 87-98. [In persian]
Asad, M. M., and Hasan, R., B. (2014). A Systematic Review: Development Techniques and Utilization of Expert Systems Inferences for Health and Safety Environment in Oil & Gas and Petroleum Industries. . In .: Malaysia University Conference Engineering Technology.
Baron, P., Brázda, P., Dobránsky, J., & Kočiško, M. (2012). Expert system approach to safety management. Risk Analysis,44(8), 77-88.
Center, S. a. (2019). Special issue of World Occupational Health and Safety Day. Tehran: Statistics and Strategic Information Center. [In persian]
Farmakis, P. M. (2018)). Genetic algorithm optimization for dynamic construction site layout planning. Organization, technology & management in construction: an international journal, 10(1), 1655-1664.
Hamidi, H. (1395). Optimization of TSK type fuzzy system rules database using hybrid heuristics algorithms. Computational Intelligence in Electrical Engineering, 7(3), 47-68.
Khanjani, H., & Saharnorchei, G. H. (2016). Safety hazards of construction workshops and the role of the Engineering System Organization in reducing accidents (with emphasis on Tehran province). Third National Conference on Crisis. [In persian]
Martinez-Aires, M. D., Lopez-Alonso, M., & Martinez-Rojas, M. (2018). Safety science. Building information modeling and safety management: A systematic review, 101, 11-18.
Omidi, L., Zakerian, S. A., Saraji, J. N. (2018). Safety performance assessment among control room operators based on feature extraction and genetic fuzzy system in the process industry. Process. Safety and Environmental Protection, 116, 590-602.
Oveysi Oskooi, Amir Hossein and Ravanshadnia, Mehdi. (2013). Application of simulation in multi-objective optimization of earth operations. 7th National Congress of Civil Engineering. Zahedan. [In persian]
Oveysi Oskooi, Amirhossein and Ravanshadnia, Mehdi and Harischian, Mahmoud,. (2016). Determining the optimal arrangement of the fleet of ground operations machinery using genetic algorithm. Fourth National Conference on Applied Research in Civil Engineering. [In persian]
Patel, D. A., & Jha, K. N. (2016). Structural equation modeling for relationship-based determinants of safety performance in construction projects. Journal of management in engineering, 32(6).
Sanchez, F. A. S., Peláez, G. I. C., & Alis, J. C.. (2017). Occupational safety and health in construction: a review of applications and trends. Industrial health, 55(3), 210-218.
Sunindijo, R. Y., & Zou, P. X.. (2011). Political skill for developing construction safety climate. Journal of Construction Engineering and Management, 138(5), 605-612.
Suokas, J., Heino, P., & Karvonen, I. (1990). Expert systems in safety management. Journal of occupational accidents, 12(1), 63-78.
Taghinejad, A. (2017). Evaluating the effect of safety management on improving the safety performance of construction workshops and providing appropriate solutions. Tabari Institute of Higher Education. [In persian]
Taherkhani Farhad, Mirza Ebrahim Tehrani Mahnaz, Malmasi Saeed. (2016). Assessing safety risks based on fuzzy logic in subway construction projects. Journal of Occupational Health Engineering, 4(3), 49-62.
Tang, K. H. D., Dawal, S. Z. M., & Olugu, E. U. (2018). Integrating fuzzy expert system and scoring system for safety performance evaluation of offshore oil and gas platforms in Malaysia. Journal of Loss Prevention in the Process Industries, 56, 32-45.
Zhou, Z. G. (2015). Overview and analysis of safety management studies in the construction industry. Safety science, 72, 337-350.