اثر سالیسیلیک اسید و اتفن بر جوانه زنی بذر و رشد دانهرست گندم تحت تنش شوری
الموضوعات : اکوفیزیولوژی گیاهان زراعیسهیلا شاکری 1 , فاطمه سعید نعمت پور 2 , اکبر صفی پور افشار 3
1 - کارشناسی ارشد گروه زیست شناسی، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران
2 - استادیار گروه زیست شناسی، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران
3 - استادیار گروه زیست شناسی، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران
الکلمات المفتاحية: پرولین, شوری, اتفن, آلفا آمیلاز, غلات,
ملخص المقالة :
شوری آب یا خاک از مهم ترین عواملی است که باعث کاهش جوانهزنی بذور گیاهان میشود. اتفن میتواند خواب بذر را در انواعی از گیاهان مثل غلات بشکند و جوانهزنی را سرعت بخشد. در برخی گیاهان پیش تیمار بذرها با سالیسیلیک اسید سبب افزایش درصد جوانه زنی شده است. به منظور بررسی اثر سالیسیلیک اسید و اتفن بر جوانهزنی بذور و رشد دانهرست رقم سیوند گندم تحت تنش شوری، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در بهار سال 1390 و در آزمایشگاه تحقیقات گیاهی دانشگاه آزاد اسلامی واحد نیشابور انجام شد. شوری با سطوح صفر، 50، 100و150 میلی مولار NaCl، سالیسیلیک اسید در سطوح صفر، 0.5 و 1 میلی مولار و اتفن در سطوح صفر، 0.05، 0.1 و 0.2 میلی مولار استفاده شد. نتایج نشان داد که درصد و سرعت جوانهزنی، طول و وزن خشک اندام هوایی و ریشهی اولیه و میزان فعالیت آنزیم آلفا آمیلاز در شرایط شوری کاهش و میزان پرولین افزایش یافت و پیشتیمار بذور با سالیسیلیک اسید سبب افزایش درصد جوانهزنی، برخی صفات رشدی و میزان فعالیت آنزیم آلفا آمیلاز و میزان پرولین در محیط شور گردید. همچنین، پیشتیمار بذور با اتفن در شرایط شور باعث کاهش برخی صفات رشدی و افزایش میزان پرولین شد ولی بر صفات جوانهزنی و میزان فعالیت آنزیم آلفا آمیلاز بیتاثیر بود. به نظر می رسد سالیسیلیک اسید به عنوان یک تنظیم کننده رشد گیاهی و مؤثر در شرایط تنش شوری و اتفن از طریق تبدیل شدن به اتیلن، مکانیسمهای تحمل گیاه را فعال و باعث بهبود خسارات ناشی از شوری بر جوانهزنی و رشد دانهرست گندم شدهاند.
Agami, R.A. 2013. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany. 88(0):171-177.
Arfan, M., H.R. Athar, and M. Ashraf. 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology. 164(6): 685-694.
Bates, I.S., R.P. Waldern, and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.
Dong, C.J., X.L. Wang, and Q.M. Shang. 2011. Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scientia Horticulturae. 129(4): 629-636.
Dong, W., X. Ai, F. Xu, T. Quan, S. Liu, and G. Xia. 2012. Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene. 511(1): 38-45.
Fahad, S., S. Hussain, A. Bano, S. Saud, S. Hassan, D. Shan, and J. Huang. 2015. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research International. 22(7): 4907-4921.
Gunes, A., A. Inal, M. Alpaslan, F. Eraslan, E.G. Bagci, and N. Cicek. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology. 164(6): 728-736.
Hassine, A.B., and S. Lutts. 2010. Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. Journal of Plant Physiology. 167(17): 1448-1456.
Hayat, S., P. Maheshwari, A.S. Wani, M. Irfan, M.N. Alyemeni, and A. Ahmad. 2012. Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiology and Biochemistry. 53(0): 61-68.
Horvath, E., J. Csiszar, A. Galle, P. Poor, A. Szepesi, and I. Tari. 2015. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology. 183: 54-63.
Hu, L., H. Hi, H. Pang, and J. Fu. 2012. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Journal of Plant Physiology. 169(2): 146-156.
Iqbal, N., S. Umar, N.A. Khan, and M.I.R. Khan. 2014. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environmental and Experimental Botany. 100: 34-42
Lin, Y., L. Yang, M. Paul, Y. Zu, and Z. Tang. 2013. Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: Evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiology and Biochemistry. 73: 211-218.
Manaa, A., E. Gharbi, H. Mimouni, S. Wasti, S. Aschi-Smiti, S. Lutts,and H. Ben Ahmed. 2014. Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. South African Journal of Botany. 95(0): 32-39.
Misra, N., and P. Saxena. 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science. 177(3): 181-189.
Palma, F., M. Lopez-Gomez, N.A. Tejera, and C. Lluch. 2013. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci. 208: 75-82.
Poonam Bhardwaj, R., R. Kaur, S. Bali, P. Kaur, G. Sirhindi, and A.P. Vig. 2015. Role of various hormones in photosynthetic responses of green plants under environmental stresses. Current Protein and Peptide Science. 16(5): 435-449.
Poor, P., J. Kovacs, D. Szopko, and I. Tari. 2013. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma. 250(1): 273-284.
Rashad, R.T., and R.A. Hussien. 2014. A comparison study on the effect of some growth regulators on the nutrients content of maize plant under salinity conditions. Annals of Agricultural Sciences. 59(1): 89-94.
Sawada, H., I.S. Shim, and K. Usui. 2006. Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis modulation by salt stress in rice seedlings. Plant Science. 171(2): 263-270.
Serna, M., Y. Coll, P.J. Zapata, M.A. Botella, M.T. Pretel, and A. Amorós. 2015. A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Scientia Horticulturae. 185: 105-112.
Shakirova, F.M., A.R. Sakhabutdinova, M.V. Bezrukova, R.A. Fatkhutdinova, and D.R. Fatkhutdinova. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science. 164(3): 317-322.
Szepesi, Á., J. Csiszár, K. Gémes, E. Horváth, F. Horváth, M.L. Simon, and I. Tari. 2009. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. (0176-1617). Retrieved from Journal of Plant Physiology. 166(9):914-925.
Wilson, C., R.A. Clark, and G.C. Shearer. 1994. Effect of salinity on the plasma membrane ATPase from tomato (Lycopersicon esculentum Mill.) leaves. Plant Science. 103(1): 1-9.
Worthington, V. 1993 Alpha amylase. In: V. Worthington (Eds.), Worthington Enzyme Manual. Freehold, pp. 36–41.
Yang, L., Y.G. Zu, and Z.H. Tang. 2013. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environmental and Experimental Botany. 86(0): 60-69.
Yang, R., T. Yang, H. Zhang, Y. Qi, Y. Xing, N. Zhang, and Y.D. Guo. 2014. Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. Plant Physiology and Biochemistry. 77(0): 23-34.
Zapata, P.J., M. Serrano, M.T. Pretel, A. Amorós, and M.A. Botella. 2004. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science. 167(4): 781-788.
Zapata, P.J., M. Serrano, X. Amp, M.T. Pretel, A. Amorós, and M.A. Botella. 2003. Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. Plant Science. 164(4): 557-563.
_||_Agami, R.A. 2013. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany. 88(0):171-177.
Arfan, M., H.R. Athar, and M. Ashraf. 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology. 164(6): 685-694.
Bates, I.S., R.P. Waldern, and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.
Dong, C.J., X.L. Wang, and Q.M. Shang. 2011. Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scientia Horticulturae. 129(4): 629-636.
Dong, W., X. Ai, F. Xu, T. Quan, S. Liu, and G. Xia. 2012. Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene. 511(1): 38-45.
Fahad, S., S. Hussain, A. Bano, S. Saud, S. Hassan, D. Shan, and J. Huang. 2015. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research International. 22(7): 4907-4921.
Gunes, A., A. Inal, M. Alpaslan, F. Eraslan, E.G. Bagci, and N. Cicek. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology. 164(6): 728-736.
Hassine, A.B., and S. Lutts. 2010. Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. Journal of Plant Physiology. 167(17): 1448-1456.
Hayat, S., P. Maheshwari, A.S. Wani, M. Irfan, M.N. Alyemeni, and A. Ahmad. 2012. Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiology and Biochemistry. 53(0): 61-68.
Horvath, E., J. Csiszar, A. Galle, P. Poor, A. Szepesi, and I. Tari. 2015. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology. 183: 54-63.
Hu, L., H. Hi, H. Pang, and J. Fu. 2012. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Journal of Plant Physiology. 169(2): 146-156.
Iqbal, N., S. Umar, N.A. Khan, and M.I.R. Khan. 2014. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environmental and Experimental Botany. 100: 34-42
Lin, Y., L. Yang, M. Paul, Y. Zu, and Z. Tang. 2013. Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: Evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiology and Biochemistry. 73: 211-218.
Manaa, A., E. Gharbi, H. Mimouni, S. Wasti, S. Aschi-Smiti, S. Lutts,and H. Ben Ahmed. 2014. Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. South African Journal of Botany. 95(0): 32-39.
Misra, N., and P. Saxena. 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science. 177(3): 181-189.
Palma, F., M. Lopez-Gomez, N.A. Tejera, and C. Lluch. 2013. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci. 208: 75-82.
Poonam Bhardwaj, R., R. Kaur, S. Bali, P. Kaur, G. Sirhindi, and A.P. Vig. 2015. Role of various hormones in photosynthetic responses of green plants under environmental stresses. Current Protein and Peptide Science. 16(5): 435-449.
Poor, P., J. Kovacs, D. Szopko, and I. Tari. 2013. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma. 250(1): 273-284.
Rashad, R.T., and R.A. Hussien. 2014. A comparison study on the effect of some growth regulators on the nutrients content of maize plant under salinity conditions. Annals of Agricultural Sciences. 59(1): 89-94.
Sawada, H., I.S. Shim, and K. Usui. 2006. Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis modulation by salt stress in rice seedlings. Plant Science. 171(2): 263-270.
Serna, M., Y. Coll, P.J. Zapata, M.A. Botella, M.T. Pretel, and A. Amorós. 2015. A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Scientia Horticulturae. 185: 105-112.
Shakirova, F.M., A.R. Sakhabutdinova, M.V. Bezrukova, R.A. Fatkhutdinova, and D.R. Fatkhutdinova. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science. 164(3): 317-322.
Szepesi, Á., J. Csiszár, K. Gémes, E. Horváth, F. Horváth, M.L. Simon, and I. Tari. 2009. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. (0176-1617). Retrieved from Journal of Plant Physiology. 166(9):914-925.
Wilson, C., R.A. Clark, and G.C. Shearer. 1994. Effect of salinity on the plasma membrane ATPase from tomato (Lycopersicon esculentum Mill.) leaves. Plant Science. 103(1): 1-9.
Worthington, V. 1993 Alpha amylase. In: V. Worthington (Eds.), Worthington Enzyme Manual. Freehold, pp. 36–41.
Yang, L., Y.G. Zu, and Z.H. Tang. 2013. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environmental and Experimental Botany. 86(0): 60-69.
Yang, R., T. Yang, H. Zhang, Y. Qi, Y. Xing, N. Zhang, and Y.D. Guo. 2014. Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. Plant Physiology and Biochemistry. 77(0): 23-34.
Zapata, P.J., M. Serrano, M.T. Pretel, A. Amorós, and M.A. Botella. 2004. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science. 167(4): 781-788.
Zapata, P.J., M. Serrano, X. Amp, M.T. Pretel, A. Amorós, and M.A. Botella. 2003. Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. Plant Science. 164(4): 557-563.