پاسخ عملکرد دانه و روغن ژنوتیپ های کلزا (Brassica napus L.) در اراضی شور دشت تبریز
الموضوعات :
اکوفیزیولوژی گیاهان زراعی
بهمن پاسبان اسلام
1
,
بهرام علیزاده
2
1 - دانشیار بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران
2 - دانشیار موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
تاريخ الإرسال : 21 الخميس , رجب, 1440
تاريخ التأكيد : 15 السبت , محرم, 1441
تاريخ الإصدار : 14 الأربعاء , ربيع الثاني, 1441
الکلمات المفتاحية:
عملکرد دانه,
تجزیه کلاستر,
درصد روغن دانه,
کلزای پاییزه,
اراضی شور,
ملخص المقالة :
این پژوهش به منظور ارزیابی پاسخ عملکرد و اجزای عملکرد دانه و روغن ژنوتیپ های کلزا در اراضی شور دشت تبریز و گزینش لاین های امید بخش اجرا گردید. آزمایش در قالب طرح بلوکهای کامل تصادفی با سه تکرار و 38 ژنوتیپ کلزا در اراضی شور ایستگاه خسروشاه مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی (هدایت الکتریکی خاک مزرعه 7/6 و آب 2/3 دسی زیمنس بر متر) طی سال زراعی 97-1396 پیاده شد. بین ژنوتیپ های مورد ارزیابی اختلاف معنی داری از نظر ارتفاع بوته، اجزای عملکرد دانه، درصد روغن، عملکرد دانه و عملکرد روغن دیده شد. WRL-96-01 با کسب تعداد 123 خورجین در بوته، 3/30 دانه در خورجین، 4/3 گرم وزن هزار دانه و به ترتیب 3268 و 1526 کیلوگرم عملکرد دانه و روغن در هکتار، بیشترین مقادیر را به خود اختصاص داد. ارقام رایج منطقه مانند اکاپی و نیما در خاک شور، عملکرد های دانه و روغن کمتری نشان دادند. بین اجزای عملکرد دانه با همدیگر و با عملکرد دانه و روغن و همچنین بین عملکرد روغن با عملکرد دانه و با درصد روغن دانه همبستگی مثبت و معنی دار به دست آمد. این امر نشان دهنده نقش تعیین کننده همه اجزای عملکرد دانه در تولید محصول در خاک شور بود. با تجزیه کلاستر به روش وارد، 20 ژنوتیپ با میانگین عملکرد دانه و روغن بالاتر در یک گروه جای گرفتند. این گروه به عنوان ژنوتیپ های امید بخش انتخاب شده و برای آزمایش های سازگاری جهت معرفی ارقام پر محصول و سازگار با اراضی شور دشت تبریز و مناطقی با شرایط آب و هوایی مشابه می توانند مورد توجه قرار گیرند.
المصادر:
· Arvin, P., M. Azizi, and A. Soltani. 2010. Comparison of yield and physiological indices of spring cultivars of oilseed rape species. Seed and Plant Journal. 25: 401-417.
· Asaduzzaman, M., M.A. James, and E. Pradey. 2014. Canola (Brassica napus) germplasm shows variable allelophathic effect against annual ryegrass (Lolium rigidum). Plant and Soil Journal. 380: 47-56.
· Assefa, Y., K. Roozeboom, and M. Stamm. 2014. Winter canola yield and survival as a function of environment, genetics, and management. Crop Science. 54: 2303-2313.
· Atlasi Pak, V. 2016. Effect of salt stress on growth and ion distribution in tolerant and sensitive cultivars of rapeseed (Brassica napus L.). Production and Processing of Agronomic and Horticulture Products. 20: 71-82. (In Persian).
· Azari, A., S.A.M. Modares Sanavi, H. Askari, F. Ghanati, A.M. Naji, and B. Alizadeh. 2012. Effect of salt stress on morphological and physiological traits of two species of rapeseed (Brassica napus and B. rapa). Iranian Journal of Agronomy Science. 14: 121-135. (In Persian).
· Baybordi, A., S.J. Tabatabaei, and A. Ahmadoff. 2011. Effect of different ratio of nitrat to ammonium on photosynthesis and actions of antioxidant enzymes in canola under salinity conditions. Iranian Journal of Agricultural Researches. 8(6): 975-982. (In Persian).
· Escobar, M., M. Berti, I. Matus, M. Tapia, and B. Johnson. 2011. Genotype × environment interaction in canola (Brassica napus L.) seed yield in Chile. Chilean Journal of Agricultural Research. 71(2): 175-186.
· Faraji, A. 2013. The role of analysis components to determine seed yield of canola (Brassica napus L.) in Gonbad areas. Journal of Plant Production. 20: 217-233. (In Persian).
· Frenck, G., L. Linden, T.N. Mikkelsen, H. Brix, and R.B. Jorgensen. 2011. Increased CO2 does not compensate for negative effects on yield caused by higher temperature and O3 in Brassica napus L. European Journal of Agronomy. 35: 127-134.
· Ghodrati, G.R. 2012. Response of grain yield and yield components of promising genotypes of spring rapeseed (Brassica napus L.) under non-stress and moisture stress conditions. Crop Breeding Journal. 2(1): 49-56.
· Goodarzi, A., F. Bazrafshan, M. Zare, H. Faraji, and A.R. Safahani-Langeroodi. 2016. An assessment of the response of 20 canola (Brassica napus L.) genotypes to drought stress during flowering. Entomology and Applied Science. 5: 81-88.
· Grewal, H.S. 2010. Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertisol with variable subsoil NaCl salinity. Agricutural Water Management Journal. 97: 148-156.
· Gunasekera, C.P., L.D. Martin, K.H.M. Siddique, and G.H. Walton. 2006. Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (B. napus L.) in Mediterranean-type environments 1. Crop growth and seed yield. European Journal of Agronomy. 25: 1-12.
· Hua, S., H. Yu, Y. Zhang, B. Lin, H. Ding, D. Zhang, Y. Ren, and Z. H. Chen. 2012. Variation of carbohydrates and macronutrients during the flowering stage in canola (Brassica napus L.) plants with contrasting seed oil content. Australian Journal of Crop Science. 6: 1257-1282.
· Khan, M.N., M.Y. Ashraf, S.M. Mujtaba, M.V. Shirazi, A. Shereen, S. Mumtaz, M. Aqil Siddiqui, and G. Murtaza Kaleri. 2010. Evaluation of high yielding canola type Brassica genotypes/mutants for drought tolerance using physiological indices as screening tool. Pakistan Journal of Botany. 42: 3807-3816.
· Kimber, D.S., and D.I. Mc Gregor. 1995. The species and their origin cultivation and world production. In: Kimber D.S., and D.I. Mc Gregor (eds.). Brassica oilseeds. CAB International. Pp. 1-7.
· Liang, W., X. Ma, P. Wan, and L. Liu. 2018. Plant salt tolerance mechanism: a review. Biochemical and Biophysical Research Communications. 495: 286-291.
· Mier Mohammadi Meybodi, A.M., and B. Gharayazi. 2002. Physiological aspects and plant breeding for salinity stress. Esfahan Industerial University Press. 247 P. (In Persian).
· Mirnezami-Ziabari, S.H., and M. Sanei-Shariatpanah. 1994. Usual methods in fats and oils analysis. Mashhad Publication Company. 274p. (In Persian).
· Nowosad, K., and A. Liersch. 2015. Genotype by environment interaction for seed yield in rapeseed (Brassica napus L.) using additive main effects and multiplicative interaction model. Euphytica. 208: 187-194.
· Okcu, G., M.D. Kaya, and M. Atak. 2005. Effect of salt and drought stress on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry. 29: 237-241.
· Pasban Eslam, B. 2009. Evaluation of physiological indices, yield and its components as screening techniques for water deficit tolerance in oilseed rape cultivares. Journal of Agricutural Science and Techology. 11: 413-422.
· Sabaghnia, N., H. Dehghani, B. Alizadeh, and M. Moghaddam. 2010. Heterosis and combining ability analysis for oil yield and its components in rapeseed. Australian Journal of Crop Science. 4: 390-397.
· Tarinejad, A., H. Gayomi, V. Rashidi, F. Farahvash, and B. Alizadeh. 2012. Evaluation of tolerance rate of canola cultivars to salinity stress. Sustainable Agriculture and Production Science. 23(4): 30-43.
· Zhang, H., S. Flottmann, and S.P. Milory. 2011. Yield formation of canola (Brassica napus L.) and associated traits in the high rainfall zone. 17th Australian Research Assembly on Brassica. Wagge Wagge, NSW. 15-17 August. Conference Proceedings: 93-98.
_||_