بررسی کمیت و کیفیت علوفه شبدر برسیم (Trifolium alexandrinum L.) با کاربرد سویههای باکتری Pseudomonas putida و کود فسفره در کشت دوم
الموضوعات :
اکوفیزیولوژی گیاهان زراعی
محمدحسین انصاری
1
,
مهدی قدیمی
2
1 - استادیار گروه زراعت دانشگاه آزاد اسلامی واحد رشت
2 - دانشآموخته کارشناسی ارشد زراعت، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.
تاريخ الإرسال : 03 الجمعة , شوال, 1437
تاريخ التأكيد : 07 الأربعاء , شعبان, 1438
تاريخ الإصدار : 26 الإثنين , شعبان, 1438
الکلمات المفتاحية:
پروتئین,
فسفر,
اسیدیته خاک,
آنزیم فسفاتاز,
الیاف خام,
ملخص المقالة :
اثر برخی از سویههای باکتری سودوموناس پوتیدا همراه با سطوح مختلف کود شیمیایی فسفر بر خصوصیات کمّی و کیفی علوفه شبدر برسیم طی آزمایشی به صورت فاکتوریل با طرح بلوکهای کامل تصادفی در سه تکرار در منطقه فومن استان گیلان به صورت کشت دوم، پس از برداشت برنج، بررسی شد. سطوح کودی شامل سه سطح فسفر (صفر، ۷۵ و 1۵0 کیلوگرم سوپرفسفات تریپل در هکتار) و سویههای باکتری در چهار سطح (سویههای M21، M168و M5 و بدون تلقیح با باکتری) بودند. نتایج نشان داد که کاربرد کود فسفر منجر به افزایش pH خاک در طول دوره رشد گیاه شد، در حالی که سویههای باکتری pH خاک را تعدیل نمودند. همچنین، تلقیح باکتریایی مقدار پروتئین خام، پروتئین قابل هضم علوفه، فعالیت فسفاتاز اسیدی و قلیایی خاک پیرامون ریشه را در مقایسه با تیمار عدم تلقیح افزایش ولی مقدار الیاف خام علوفه را کاهش داد. عملکرد علوفه تر شبدر، عملکرد پروتئین و مقدار فسفر شاخ و برگ نیز تحت تاثیر برهمکنش سویههای باکتری و کود شمیایی فسفر قرار گرفتند. بیشترین عملکردهای علوفه تر و پروتئین به ترتیب با میانگین های 16۱36 و ۲۷۴۶ کیلوگرم در هکتار از سویه M5 در سطح ۱۵۰ کیلوگرم کود فسفات به دست آمدند که نسبت به تیمار عدم تلقیح، عملکردهای علوفه و پروتئین را به ترتیب ۴۹/۱۶ و ۱/۸ درصد افزایش داد. با توجه به نتایج به دست آمده، کاربرد ۱۵۰ کیلوگرم کود شیمیایی فسفر در هکتار و تلقیح شبدر با باکتری سویه M5 سودوموناس پوتیدا برای دست یابی به حداکثر عملکرد و کیفیت علوفه آن در نظام کشت دوم در منطقه فومن می تواند مؤثر باشد.
المصادر:
· Afzal, A., M. Ashraf, S.A. Asad, and M. Farooq. 2010. Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum) in rainfed area. Journal of Agriculture and Biology. 7(2): 207–209.
· Ahemad M., and M.S. Khan. 2012. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris L.) rhizosphere. Chemosphere. 86: 945–950.
· Alikhani, H.A., A. Hemati, M. Rashtbari, S.D. Tiegs, and H. Etesami. 2017. Enriching Vermicompost Using P-solubilizing and N-fixing Bacteria under Different Temperature Conditions. Communications in Soil Science and Plant Analysis. 48(2): 139-147.
· Amin-Deldar, Z., M.R. Ehteshami, A. Shahdi Komleh, and K. Khavazi. 2012. Effect of Pseudomonas fluorescens strains on morphophysiologic traits and nutrients uptake in some of rice cultivars. Electronic Journal of Crop Production. 5(1): 141-149. (In Persian).
· Anglade, J., G. Billen, and J. Garnier. 2015. Relationships for estimating N2 fixation in legumes: Incidence for N balance of legume-based cropping systems in Europe. Ecosphere. 6(3): 1-24.
· Aronsson, H., E.M. Hansen, I.K. Thomsen, J. Liu, A.F. Øgaard, H. Känkänen, and B. Ulén. 2016. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland. Journal of Soil and water Conservation. 71(1): 41-55.
· Bakhoum, G. H., M.O. Kabesh, M.F. El-Kramany, T. Thalooth, and M.M. Tawfik. 2016. Utilization of BioFertilizers in Field Crop Production 17-Effect of organic manuring, mineral and bio fertilizers on forage yield and nutritive value of Egyptian clover (berseem) grown in new reclaimed sandy soil. International Journal of Chemical Technology Research. 9: 34-41.
· Bhattacharyya, P.N., and D.K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology. 28(4): 1327-1350.
· Bona, E., S. Cantamessa, N. Massa, P. Manassero, F. Marsano, A. Copetta, G. Lingua, G. D’Agostino, E. Gamalero, and G. Berta. 2017. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza. 27(1): 1-11.
· Chaichi, M.R., G. Shabani, and F. Noori. 2015. Response of berseem clover to chemical, biological and integrated use of fertilizers. Cercetari Agronomice in Moldova. 48(1): 77-87.
· Chaudhry, M.Z., A.U. Naz, A. Nawaz, H. Mukhtar, and M. Irfan-Ul-Haq. 2016. Colonization of plant growth promoting rhizobacteria (PGPR) on two different root systems. Pakistan Journal of Botany. 48(4):1691-1696.
· Clark, A. 2007. Managing cover crops profitability, (3rd ed.). Sustainable Agriculture Network, Beltsville, MD.118-224.
· Coombs, C., J.D. Lauzon, B. Deen, and L.L. Van Eerd. 2017. Legume cover crop management on nitrogen dynamics and yield in grain corn systems. Field Crops Research. 201: 75-85.
· Dawlatzai, A. J., D. Kumar, N. Singh, A. Anand, and R. Prasanna. 2015. Yield and nutrients uptake of wheat (Triticum aestivum) and soil microbial parameters as influenced by plant growth promoting rhizobacteria. Indian Journal of Agronomy. 61(3): 396-400.
· Eivazi, F., and M. Tabatabai. 1977. Phosphates in soils. Soil Biology and Biochemistry. 9: 167-172.
· Gaafar, H.M.A., A.I.A.A. El-Lateif, and S.B.A. 2011. Effect of replacement of berseem (Trifolium alexandrinum L.) hay by berseem silage on performance of growing rabbits. Archiva Zootechnica. 14 (4): 59-69.
· Ghaderi, A., N. Aliasgharzad, S. Oustan, and P.A. Olsson, 2008. Efficiency of three Pseudomonas isolates in releasing phosphate from an artificial variable charge mineral (iron III hydroxide). Soil Environment. 27: 71-76.
· Harvas, A.B., I. Canosa, and E. Santero. 2008. Transcriptome analysis of Pseudomonas putida in response to nitrogen availability. Journal of Bacteriology. 190: 416–420.
· Ibrahim, M.E., A.M. Masila, and Abdel-Aal, S.M. 2010. Effect of fertilizer with nitrogen, phosphorus and some nutrients compounds on growth, yield and chemical composition of Egyptian clover. Journal of Agricultural Research. 18(4): 689-702.
· Jafari, A., V. Connolly, A. Frolich, and E.K. Walsh. 2003. A note on estimation of quality in perennial ryegrass by near infrared spectroscopy. Irish Journal of Agriculture and Food Research. 42: 293-299.
· Javadi, H., M.H. Saberi, A. Azari Nasr Abad, and S. Khosravi. 2010. Effect PGPR and phosphor fertilizer on qualitative and quantitative characteristics of clover. Iranian Journal of Field Crops Research. 8(3): 384-392. (In Persian).
· Khan, M.S., E. Ahmad Zaidi, and M. Oves. 2013. Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari. D.K. et al (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, 237–265 pp.
· Kumar, V., P. Singh, M.A. Jorquera, P. Sangwan, P, Kumar, A.K. Verma, and A. Sanjeev. 2015. Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard and Egyptian clover. World Journal of Microbiology and Biotechnology. 29: 1361–1369.
· Lazali, M., A. Bargaz, S. Brahimi, L. Amenc, J. Abadie, and J.J. Drevon. 2016. Expression of a phosphate-starvation inducible fructose-1, 6-bisphosphatase gene in common bean nodules correlates with phosphorus use efficiency. Journal of Plant Physiology. 205: 48-56.
· Linn, J.G., and N.P. Martin. 1999. Forage quality tests and interpretation. The College of Agricultural, Food and Environmental Sciences, University of Minnesota Press, USA.
· Maougal, R.T., A. Brauman, C. Plassard, J. Abadie, A. Djekoun, and J.J. Drevon. 2014. Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated clover under P deficiency. European Journal of Soil Biology. 62: 8–14.
· Pant, H.K., and K.R. Reddy. 2003. Potential internal loading of phosphorus in a wetlands constructed in agricultural land. Water Research. 37: 965-972.
· Pereg, L., L.E. de-Bashan, and Y. Bashan. 2016. Assessment of affinity and specificity of Azospirillum for plants. Plant and Soil. 399(1-2): 389-414.
· Poonguzhali, S., M. Madhaiya, and T. Sat. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. Journal of Microbiology and Biotechnology. 18: 773–777.
· Rahimi, L., N. Aliasgharzad, and S.H. Oustan. 2012. Effect of native Azotobacter Chroococcum strains on growth and uptake of nitrogen and phosphorus by wheat plant in greenhouse conditions. Isfahan University of Technology. 15(58): 159-171. (In Persian).
· Rashid, M., S. Khalil, N. Ayub, S. Alam, and Latif, F. 2004. Organic acids productions solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Science. 7:187-196.
· Salimpour, S., K. Khavazi, H. Nadian, H. Besharati, and M. Miransari. 2010. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science. 4(5): 330-334.
· Shahverdi, M., B. Mirshekari, H.A. Rahmani, V. Rashidi, and M.R. Ardakani. 2014. Response of forage quality in Persian clover upon co-inoculation with native Rhizobium leguminosarum symbiovar (sv.) trifoli RTB3 and plant-growth promoting Pseudomonas florescence 11168 under different levels of chemical fertilizers. African Journal of Microbiology Research. 8(2): 155-161.
· Sharma, S.B., R.Z. Sayyed, M.H. Trivedi, and T.A. Gobi. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus. 2:587.
· Singh, B., and R.A. Sharma. 2016. Yield enhancement of phytochemicals by Azotobacter chroococcum biotization in hairy roots of Arnebia hispidissima. Industrial Crops and Products. 81: 169-175.
· Vargas, W.A., J.C. Mandawe, and C.M. Kenerley. 2009. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiology.151: 792–808.
· Vassileva, M., M. Serrano, V. Bravo, E. Jurado, I. Nikolaeva, V. Martos, and N. Vassilev. 2010. Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Applied in Microbiology and Biotechnology. 85:1287–1299.
· Veneklaas, E.J., H. Lambers, J. Bragg, P.M. Finnegan, C.E. Lovelock, and C. William. 2012. Opportunities for improving phosphorus use efficiency in crop plants. New Phytologist. 195(2): 306-320.
· Viruel, E., M.E. Lucca, and F. Sin˜eriz. 2011. Plant growth promotion traits of phosphobacteria isolated from Puna. Argentina Archive Microbiology. 193: 489–496.
· Wang, L.L., E.T. Wang, J. Liu, Y. Li, and W.X. Chen. 2006. Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microbial Ecology. 52(3): 436–443.
· Wang, X., Y. Wang. J. Tian, B.L. Lim, X. Yan, and H. Liao. 2009. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology. 151: 233–240.
· Wani, P.A., M.S. Khan, and A. Zaidi. 2007. Synergistic effects of the inoculation with nitrogen fixing and phosphate-solubilizing rhizobacteria on the performance of field grown chickpea. Journal of Plant Nutrition and Soil Science. 170: 283–287.
· Yadav, B.K., and A. Verma. 2012. Phosphate solubilization and mobilization in soil through soil microorganisms under arid ecosystems, the functioning of ecosystems. Plant and Soil. 132(4): 234-245.
· Yu-guo, Z., D. Zaho-rong, C. Li Xia-Ling, and S. He. 2006. Effects of phosphor application on growth and forage yield of clover under inoculation. Journal of Anhui Agriculture University. 3: 35-39.
_||_
· Afzal, A., M. Ashraf, S.A. Asad, and M. Farooq. 2010. Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum) in rainfed area. Journal of Agriculture and Biology. 7(2): 207–209.
· Ahemad M., and M.S. Khan. 2012. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris L.) rhizosphere. Chemosphere. 86: 945–950.
· Alikhani, H.A., A. Hemati, M. Rashtbari, S.D. Tiegs, and H. Etesami. 2017. Enriching Vermicompost Using P-solubilizing and N-fixing Bacteria under Different Temperature Conditions. Communications in Soil Science and Plant Analysis. 48(2): 139-147.
· Amin-Deldar, Z., M.R. Ehteshami, A. Shahdi Komleh, and K. Khavazi. 2012. Effect of Pseudomonas fluorescens strains on morphophysiologic traits and nutrients uptake in some of rice cultivars. Electronic Journal of Crop Production. 5(1): 141-149. (In Persian).
· Anglade, J., G. Billen, and J. Garnier. 2015. Relationships for estimating N2 fixation in legumes: Incidence for N balance of legume-based cropping systems in Europe. Ecosphere. 6(3): 1-24.
· Aronsson, H., E.M. Hansen, I.K. Thomsen, J. Liu, A.F. Øgaard, H. Känkänen, and B. Ulén. 2016. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland. Journal of Soil and water Conservation. 71(1): 41-55.
· Bakhoum, G. H., M.O. Kabesh, M.F. El-Kramany, T. Thalooth, and M.M. Tawfik. 2016. Utilization of BioFertilizers in Field Crop Production 17-Effect of organic manuring, mineral and bio fertilizers on forage yield and nutritive value of Egyptian clover (berseem) grown in new reclaimed sandy soil. International Journal of Chemical Technology Research. 9: 34-41.
· Bhattacharyya, P.N., and D.K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology. 28(4): 1327-1350.
· Bona, E., S. Cantamessa, N. Massa, P. Manassero, F. Marsano, A. Copetta, G. Lingua, G. D’Agostino, E. Gamalero, and G. Berta. 2017. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza. 27(1): 1-11.
· Chaichi, M.R., G. Shabani, and F. Noori. 2015. Response of berseem clover to chemical, biological and integrated use of fertilizers. Cercetari Agronomice in Moldova. 48(1): 77-87.
· Chaudhry, M.Z., A.U. Naz, A. Nawaz, H. Mukhtar, and M. Irfan-Ul-Haq. 2016. Colonization of plant growth promoting rhizobacteria (PGPR) on two different root systems. Pakistan Journal of Botany. 48(4):1691-1696.
· Clark, A. 2007. Managing cover crops profitability, (3rd ed.). Sustainable Agriculture Network, Beltsville, MD.118-224.
· Coombs, C., J.D. Lauzon, B. Deen, and L.L. Van Eerd. 2017. Legume cover crop management on nitrogen dynamics and yield in grain corn systems. Field Crops Research. 201: 75-85.
· Dawlatzai, A. J., D. Kumar, N. Singh, A. Anand, and R. Prasanna. 2015. Yield and nutrients uptake of wheat (Triticum aestivum) and soil microbial parameters as influenced by plant growth promoting rhizobacteria. Indian Journal of Agronomy. 61(3): 396-400.
· Eivazi, F., and M. Tabatabai. 1977. Phosphates in soils. Soil Biology and Biochemistry. 9: 167-172.
· Gaafar, H.M.A., A.I.A.A. El-Lateif, and S.B.A. 2011. Effect of replacement of berseem (Trifolium alexandrinum L.) hay by berseem silage on performance of growing rabbits. Archiva Zootechnica. 14 (4): 59-69.
· Ghaderi, A., N. Aliasgharzad, S. Oustan, and P.A. Olsson, 2008. Efficiency of three Pseudomonas isolates in releasing phosphate from an artificial variable charge mineral (iron III hydroxide). Soil Environment. 27: 71-76.
· Harvas, A.B., I. Canosa, and E. Santero. 2008. Transcriptome analysis of Pseudomonas putida in response to nitrogen availability. Journal of Bacteriology. 190: 416–420.
· Ibrahim, M.E., A.M. Masila, and Abdel-Aal, S.M. 2010. Effect of fertilizer with nitrogen, phosphorus and some nutrients compounds on growth, yield and chemical composition of Egyptian clover. Journal of Agricultural Research. 18(4): 689-702.
· Jafari, A., V. Connolly, A. Frolich, and E.K. Walsh. 2003. A note on estimation of quality in perennial ryegrass by near infrared spectroscopy. Irish Journal of Agriculture and Food Research. 42: 293-299.
· Javadi, H., M.H. Saberi, A. Azari Nasr Abad, and S. Khosravi. 2010. Effect PGPR and phosphor fertilizer on qualitative and quantitative characteristics of clover. Iranian Journal of Field Crops Research. 8(3): 384-392. (In Persian).
· Khan, M.S., E. Ahmad Zaidi, and M. Oves. 2013. Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari. D.K. et al (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, 237–265 pp.
· Kumar, V., P. Singh, M.A. Jorquera, P. Sangwan, P, Kumar, A.K. Verma, and A. Sanjeev. 2015. Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard and Egyptian clover. World Journal of Microbiology and Biotechnology. 29: 1361–1369.
· Lazali, M., A. Bargaz, S. Brahimi, L. Amenc, J. Abadie, and J.J. Drevon. 2016. Expression of a phosphate-starvation inducible fructose-1, 6-bisphosphatase gene in common bean nodules correlates with phosphorus use efficiency. Journal of Plant Physiology. 205: 48-56.
· Linn, J.G., and N.P. Martin. 1999. Forage quality tests and interpretation. The College of Agricultural, Food and Environmental Sciences, University of Minnesota Press, USA.
· Maougal, R.T., A. Brauman, C. Plassard, J. Abadie, A. Djekoun, and J.J. Drevon. 2014. Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated clover under P deficiency. European Journal of Soil Biology. 62: 8–14.
· Pant, H.K., and K.R. Reddy. 2003. Potential internal loading of phosphorus in a wetlands constructed in agricultural land. Water Research. 37: 965-972.
· Pereg, L., L.E. de-Bashan, and Y. Bashan. 2016. Assessment of affinity and specificity of Azospirillum for plants. Plant and Soil. 399(1-2): 389-414.
· Poonguzhali, S., M. Madhaiya, and T. Sat. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. Journal of Microbiology and Biotechnology. 18: 773–777.
· Rahimi, L., N. Aliasgharzad, and S.H. Oustan. 2012. Effect of native Azotobacter Chroococcum strains on growth and uptake of nitrogen and phosphorus by wheat plant in greenhouse conditions. Isfahan University of Technology. 15(58): 159-171. (In Persian).
· Rashid, M., S. Khalil, N. Ayub, S. Alam, and Latif, F. 2004. Organic acids productions solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Science. 7:187-196.
· Salimpour, S., K. Khavazi, H. Nadian, H. Besharati, and M. Miransari. 2010. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science. 4(5): 330-334.
· Shahverdi, M., B. Mirshekari, H.A. Rahmani, V. Rashidi, and M.R. Ardakani. 2014. Response of forage quality in Persian clover upon co-inoculation with native Rhizobium leguminosarum symbiovar (sv.) trifoli RTB3 and plant-growth promoting Pseudomonas florescence 11168 under different levels of chemical fertilizers. African Journal of Microbiology Research. 8(2): 155-161.
· Sharma, S.B., R.Z. Sayyed, M.H. Trivedi, and T.A. Gobi. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus. 2:587.
· Singh, B., and R.A. Sharma. 2016. Yield enhancement of phytochemicals by Azotobacter chroococcum biotization in hairy roots of Arnebia hispidissima. Industrial Crops and Products. 81: 169-175.
· Vargas, W.A., J.C. Mandawe, and C.M. Kenerley. 2009. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiology.151: 792–808.
· Vassileva, M., M. Serrano, V. Bravo, E. Jurado, I. Nikolaeva, V. Martos, and N. Vassilev. 2010. Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Applied in Microbiology and Biotechnology. 85:1287–1299.
· Veneklaas, E.J., H. Lambers, J. Bragg, P.M. Finnegan, C.E. Lovelock, and C. William. 2012. Opportunities for improving phosphorus use efficiency in crop plants. New Phytologist. 195(2): 306-320.
· Viruel, E., M.E. Lucca, and F. Sin˜eriz. 2011. Plant growth promotion traits of phosphobacteria isolated from Puna. Argentina Archive Microbiology. 193: 489–496.
· Wang, L.L., E.T. Wang, J. Liu, Y. Li, and W.X. Chen. 2006. Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microbial Ecology. 52(3): 436–443.
· Wang, X., Y. Wang. J. Tian, B.L. Lim, X. Yan, and H. Liao. 2009. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology. 151: 233–240.
· Wani, P.A., M.S. Khan, and A. Zaidi. 2007. Synergistic effects of the inoculation with nitrogen fixing and phosphate-solubilizing rhizobacteria on the performance of field grown chickpea. Journal of Plant Nutrition and Soil Science. 170: 283–287.
· Yadav, B.K., and A. Verma. 2012. Phosphate solubilization and mobilization in soil through soil microorganisms under arid ecosystems, the functioning of ecosystems. Plant and Soil. 132(4): 234-245.
· Yu-guo, Z., D. Zaho-rong, C. Li Xia-Ling, and S. He. 2006. Effects of phosphor application on growth and forage yield of clover under inoculation. Journal of Anhui Agriculture University. 3: 35-39.