کاربرد نانو پلیمرهای زیستی در درمان صدمات قلبی
الموضوعات : تحقیقات در علوم مهندسی سطح و نانو موادبهزاد یثربی 1 , محدثه سیفی 2 , زهرا سلیمان زاده 3 , عاطفه بدر 4
1 - استادیار گروه مهندسی پزشکی، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی تبریز، ایران
2 - دانشجو کارشناسی مهندسی پزشکی، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، تبریز، ایران
3 - دانشجو کارشناسی مهندسی پزشکی، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، تبریز، ایران
4 - دانشجوی دکتری، دانشکده مهندسی مواد، دانشگاه صنعتی سهند، تبریز، ایران
الکلمات المفتاحية: زیست سازگاری, حامل دارو, نانو بیومواد, بیماری ایسکمیک قلبی, جریان خون میوکارد,
ملخص المقالة :
بیماری های قلبی عروقی، از جمله بیماری ایسکمیک قلبی و سکته مغزی، مسئول 25 درصد از کل مرگ و میرها در سراسر جهان هستند. در سطح جهانی، علیرغم پیشرفت های عظیم در تشخیص و درمان بیماری های قلبی عروقی، شیوع آنها همچنان در حال افزایش است. برای اهداف درمانی و احیا کننده، استفاده از نانوبیومواد راه حل هایی را ارائه میدهد که نسبت به سایر مواد مصنوعی مزایای زیادی دارد. علاوه بر این، دسترسی آسان بهعنوان فرمولهای نانو، کاربرد بیومواد را بهعنوان حامل دارو یا نانوپوستههای محافظ توصیه میکند که زیست سازگاری عوامل تصویربرداری را بهبود میبخشد. به طور مثال در مقایسه با روشهای سنتی دارورسانی، تحویل نانودارو، لیگاندهای مختلفی را با توجه به مکانیسمهای پاتولوژیک و استراتژیهای درمانی مختلف به نانوحاملهای مربوطه وارد میکند تا مستقیماً محل ضایعه را هدف قرار دهد. این استراتژی به طور موثرتری ناحیه پلاک آترواسکلروتیک را هدف قرار می دهد و غلظت دارو را برای بهبود جریان خون میوکارد افزایش می دهد.
[1] G. F. Tomaselli and D. P. Zipes, What causes sudden death in heart failure?, Circ. Res. 95 (2004)754–763.
[2] F. Braunschweig, M. R. Cowie, and A. Auricchio, What are the costs of heart failure?,Europace, 13 (2011) ii13--ii17.
[3] L. K. Kim et al., Rate of percutaneous coronary intervention for the management of acute coronary syndromes and stable coronary artery disease in the United States (2007 to 2011), Am. J. Cardiol, 114 (2014) 1003–1010.
[4] A. J. Epstein, D. Polsky, F. Yang, L. Yang, and P. W. Groeneveld, Coronary revascularization trends in the United States, 2001-2008, Jama, 305 (2011)1769–1776.
[5] D. Van Der Linde et al., Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis, J. Am. Coll. Cardiol, 58 (2011) 2241–2247.
[6] T. Vos et al., Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990--2013: a systematic analysis for the Global Burden of Disease Study 2013, Lancet, 386 (2015) 743–800.
[7] S. Mohammadi Nasr et al., Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine, Int. J. Nanomedicine, (2020) 4205–4224.
[8] Y. Li, H. Meng, Y. Liu, B. P. Lee, and others, Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering, Sci. World J, 2015 (2015).
[9] C. Dong and Y. Lv, Application of collagen scaffold in tissue engineering: recent advances and new perspectives, Polymers (Basel), 8 (2016)42.
[10] G. Yang et al., Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells, Peer J, 4 (2016) e2497 .
[11] T. Kumar Giri, D. Thakur, A. Alexander, H. Badwaik, D. Krishna Tripathi, and others, Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications, Curr. Drug Deliv, 9 (2012) 539–555.
[12] A. G. Cadar, T. K. Feaster, M. D. Durbin, and C. C. Hong, Production of single contracting human induced pluripotent stem cell-derived cardiomyocytes: matrigel mattress technique, Curr. Protoc. Stem Cell Biol, 42 (2017) 4A--14.
[13] S. Jana, S. Maiti, and S. Jana, Biopolymer-based composites: drug delivery and biomedical applications, (2017).
[14] B. Guo and P. X. Ma, Synthetic biodegradable functional polymers for tissue engineering: a brief review, Sci. China Che, 57 (2014) 490–500.
[15] V. Sanko, I. Sahin, U. Aydemir Sezer, and S. Sezer, A versatile method for the synthesis of poly (glycolic acid): high solubility and tunable molecular weights, Polym. J, 51 (2019) 637–647.
[16] M. Niaounakis, Biopolymers: applications and trends. William Andrew, (2015).
[17] M. S. Lopes, A. L. Jardini, and R. Maciel Filho, “Poly (lactic acid) production for tissue engineering applications, Procedia Eng, 42 (2012) 1402–1413.
[18] J.-M. Lü et al., Current advances in research and clinical applications of PLGA-based nanotechnology, Expert Rev. Mol. Diagn, 9 (2009) 325–341.
[19] E. Vey, C. Rodger, J. Booth, M. Claybourn, A. F. Miller, and A. Saiani, Degradation kinetics of poly (lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies, Polym. Degrad. Stab, 96 (2011)1882–1889.
[20] N. Jirofti, D. Mohebbi-Kalhori, A. Samimi, A. Hadjizadeh, and G. H. Kazemzadeh, Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers, Biomed. Mate, 13 (2018) 55014.
[21] A. A. Gostev, A. A. Karpenko, and P. P. Laktionov, “Polyurethanes in cardiovascular prosthetics,” Polym. Bull. (2018) 4311–4325,.
[22] A. A. Rane et al., Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction, PLoS One, 6 (2011) e21571.
[23] I. Cicha, R. Singh, C. D. Garlichs, and C. Alexiou, Nano-biomaterials for cardiovascular applications: Clinical perspective, J. Control. release, 229 (2016) 23–36.
[24] P. W. Burridge, G. Keller, J. D. Gold, and J. C. Wu, Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming, Cell Stem Cell, 10 (2012)16–28.
[25] S. Di Franco, C. Amarelli, A. Montalto, A. Loforte, and F. Musumeci, Biomaterials and heart recovery: cardiac repair, regeneration and healing in the MCS era: a state of the ‘heart, J. Thorac. Dis, 10 (2018) S2346.
[26] V. Mironov, T. Trusk, V. Kasyanov, S. Little, R. Swaja, and R. Markwald, Biofabrication: a 21st century manufacturing paradigm, Biofabrication, 1 (2009)22001.
[27] R. D. Pedde et al., Emerging biofabrication strategies for engineering complex tissue constructs, Adv. Mater, 29 (2017) 1606061.
[28] A. Amirsadeghi, A. Jafari, L. J. Eggermont, S.-S. Hashemi, S. A. Bencherif, and M. Khorram, Vascularization strategies for skin tissue engineering, Biomater. Sci., 8 (2020)4073–4094.
[29] A. Ferrini, M. M. Stevens, S. Sattler, and N. Rosenthal, Toward regeneration of the heart: bioengineering strategies for immunomodulation, Front. Cardiovasc. Med, 6 (2019).
[30] R. Aziz, M. Falanga, J. Purenovic, S. Mancini, P. Lamberti, and M. Guida, A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering, Nanomaterials, 13 (2023)1374.
[31] X. Wang et al., Engineering biological tissues from the bottom-up: Recent advances and future prospects, Micromachines, 13 (2021)75.
[32] Q. Hu, Z. Fang, J. Ge, and H. Li, Nanotechnology for cardiovascular diseases, Innov, (2022).
[33] H. H. Kyu et al., Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990--2017: a systematic analysis for the Global Burden of Disease Study 2017, Lancet, 392 (2018) 1859–1922.
[34] C. Schulte et al., Comparative analysis of circulating noncoding RNAs versus protein biomarkers in the detection of myocardial injury, Circ. Res, 125 (2019) 328–340.
[35] A. Perets, Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld, and S. Cohen, Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres, J. Biomed. Mater. Res. Part A An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater, 65 (2003) 489–497.
[36] C. D. Devillard and C. A. Marquette, Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel, Front. Bioeng. Biotechnol, 9 (2021) 721843.
[37] P. Klinkert, P. N. Post, P. J. Breslau, and J. H. Van Bockel, Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature, Eur. J. Vasc. Endovasc. Surg, 27 (2004) 357–362.
[38] R. Y. Kannan, H. J. Salacinski, P. E. Butler, G. Hamilton, and A. M. Seifalian, Current status of prosthetic bypass grafts: a review,” J. Biomed. Mater. Res. Part B Appl. Biomater. An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 74 (2005) 570–581.
[39] M. Herring, A. Gardner, and J. Glover, Seeding endothelium onto canine arterial prostheses: the effects of graft design, Arch. Surg, 114 (1979) 679–682.
[40] A. Gubanski, J. Kupracz, D. Kostyla Pawełand Kaczorowska, and J. Wrobel, Application of the electret in alpha radiation sensor to measure the concentration of radon in selected ambient conditions, J. Sensors, 2019 (2019)1–9.
[41] A. J. Melchiorri, N. Hibino, and J. P. Fisher, Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts, Tissue Eng. Part B Rev, 19 (2013) 292–307.
[42] R. R. Makkar et al., Possible subclinical leaflet thrombosis in bioprosthetic aortic valves, N. Engl. J. Med, 373 (2015) 2015–2024.
[43] C. Karuppusamy and P. Venkatesan, Role of nanoparticles in drug delivery system: a comprehensive review, J. Pharm. Sci. Res, 9 (2017) 318.
[44] M. Liu et al., Heart-targeted nanoscale drug delivery systems, J. Biomed. Nanotechnol, 10 (2014) 2038–2062.
[45] M. N. Holme et al, Shear-stress sensitive lenticular vesicles for targeted drug delivery, Nat. Nanotechnol, 7 (2012)536–543.
[46] Y. Wang et al, Biomimetic nanotherapies: red blood cell based core--shell structured nanocomplexes for atherosclerosis management, Adv. Sci, 6 (2019) 1900172.
[47] J. Bejarano et al., Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches, Theranostics, 8 (2018) 4710.
[48] M. Madigan and R. Atoui, Therapeutic use of stem cells for myocardial infarction, Bioengineering, 5 (2018) 28.
[49] K. Zhu, J. Li, Y. Wang, H. Lai, C. Wang, and others, Nanoparticles-assisted stem cell therapy for ischemic heart disease, Stem Cells Int, 2016 (2016).
[50] Z. M. Binsalamah, A. Paul, A. A. Khan, S. Prakash, and D. Shum-Tim, Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model, Int. J. Nanomedicine, (2011) 2667–2678.
[51] Y. Nakano et al, Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation, Sci. Rep, 6 (2016) 29601.
[52] K. Ichimura et al, A translational study of a new therapeutic approach for acute myocardial infarction: nanoparticle-mediated delivery of pitavastatin into reperfused myocardium reduces ischemia-reperfusion injury in a preclinical porcine model, PLoS One, 11 92016) e0162425.