مروری بر سلولهای خورشیدی پروسکایت هالید فلز-آلی: چالشها و فرصتها
الموضوعات :
تحقیقات در علوم مهندسی سطح و نانو مواد
محمد بادروج
1
1 - گروه فیزیک، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ایران
تاريخ الإرسال : 21 الإثنين , ربيع الأول, 1444
تاريخ التأكيد : 17 الأحد , جمادى الأولى, 1444
تاريخ الإصدار : 28 الثلاثاء , ربيع الثاني, 1444
الکلمات المفتاحية:
پایداری,
سمیت,
مواد پروسکایت,
سلولهای خورشیدی پروسکایت بدون سرب,
پدیده پسماند,
ملخص المقالة :
سلولهای خورشیدی مبتنی بر مواد پروسکایت، در سال های اخیر توجه زیادی را به خود جلب کردهاند. این فناوریها، به دلیل توانایی در دستیابی به بازده بالا با صرف هزینه کم، موضوع تحقیقات متعددی را به خود اختصاص دادهاند. بر این اساس، این تحقیق، با هدف دستیابی به بینش عمیقتر در این حوزه از فناوری، مروری جامع بر عوامل مؤثر بر فرآیندهای ساخت، دستاوردها و چالشهای پیش روی سلولهای خورشیدی پروسکایت هالید فلز-آلی دارد و راهکارهای بهبود عملکرد، افزایش پایداری و کاهش میزان سمیت لایه جاذب این نوع افزاره ها را به صورت گام به گام مورد مطالعه قرار میدهد. بررسی ها نشان داد که علاوه بر نوع روش لایه نشانی و نحوه معماری اجزاء، مهمترین عوامل برای دستیابی به یک سلول خورشیدی پروسکایت با عملکرد فتوولتائیک بالا، بهبود ریخت شناسی، کاهش سد انرژی برای هسته سازی، کنترل رشد یکنواخت بلورهای پروسکایت و کاهش اثر پسماند می باشند و این پارامترها را میتوان با استفاده از مهندسی حلال ها و مواد افزودنی، تنظیم متغیرهای پوششدهی از قبیل دمای فرآوری و پسا فرآوری و مدیریت زمان واکنش ها بهینه کرد. همچنین، تحقیقات در خصوص جایگزینی عنصر سرب با سایر عناصر کم سمی تر نشان می دهد که تا کنون امیدوارکنندهترین نتایج برای سلولهای خورشیدی پروسکایت مبتنی بر قلع، با بازده تبدیل توان حدود 12-9 % ، بدست آمده است. این بازده در مقایسه با پروسکایتهای مبتنی بر سرب، که تا سال 2023 حدود 26 % است، هنوز قابلرقابت نیست و نیاز به تلاش های بیشتری در این حوزه از تحقیقات می باشد.
المصادر:
Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the american chemical society, 131 (2009) 6050-6051.
Green, E. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57), Progress in photovoltaics: research and applications, 29 (2021) 3-15.
Mei, Y. Sheng, Y. Ming, Y. Hu, Y. Rong, W. Zhang, S. Luo, G. Na, C. Tian, X. Hou, Stabilizing perovskite solar cells to IEC61215: 2016 standards with over 9,000-h operational tracking, Joule, 4 (2020) 2646-2660.
Luo, T. Wu, Y. Wang, X. Lin, H. Su, Q. Han, L. Han, Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers, Science China Chemistry, 64 (2021) 218-227.
Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H.T. Nguyen, J. Wen, M. Wei, V. Yeddu, M.I. Saidaminov, All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant, Nature Energy, 5 (2020) 870-880.
Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J.A. Márquez, A.B. Morales Vilches, E. Kasparavicius, J.A. Smith, Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction, Science, 370 (2020) 1300-1309.
PV Magazine, Oxford PV Completes 100 MW Factory Build Out. 2021 Available online: https://www.pvmagazine.com/2021/07/23/oxford-pv-completes-100-mw-factory-build-out/ (accessed on 5 July 2202.
Roy, A. Ghosh, F. Barclay, A. Khare, E. Cuce, Perovskite Solar Cells: A Review of the Recent Advances, Coatings, 12 (2022) 1089.
Breaking Efficiency Records with Tandem Solar Cells. 2022. Available online:https://www.chemistryworld.com/news/breaking-efficiency-records-with-tandem-solar-cells/4015529.article (accessed on 29 May 2022).
Liu, Y. Yang, K. Rakstys, A. Mahata, M. Franckevicius, E. Mosconi, R. Skackauskaite, B. Ding, K.G. Brooks, O.J. Usiobo, Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules, Nature communications, 12 (2021) 1-9.
Researchers at CHOSE and Saule Technologies Design a Large-Area Flexible Perovskite Solar Module Using a Fully Scalable Deposition Technique. 2021. Available online: https://www.perovskite-info.com/researchers-chose-and-saule-technologiesdesign-large-area-flexible-perovskite (accessed on 29 May 2022).
Imec Realizes 18.6% Efficient Perovskite Solar Cel 2021. Available online:https://www.electronicsforu.com/technologytrends/research-papers/imec-realizes-18-6-efficient-perovskite-solar-cell (accessed on 29 May 2022).
Japan’s NEDO and Panasonic Achieve 16.09% Efficiency for Large-Area Perovskite Solar Cell Module. 2020. Available online: https://www.perovskite-info.com/japan-s-nedo-and-panasonic-achieve-1609-efficiency-large-area-perovskite-solar (accessed on 29 May 2022).
Saule Technologies on Its Way to Launching Prototype Production Line in Q4 Available online: https://www.perovskiteinfo.com/saule-technologies-its-way-launching-prototype-production-line-q4-2019 (accessed on 29 May 2022).
Great Cell Unveils Its Perovskite-Based Solar Cells Commercialization Roadmap 2018. Available online: https://www.perovskite-info.com/greatcell-unveils-its-perovskite-based-solar-cells-commercialization-roadmap (accessed on 29 May 2022).
Du, X. Zhu, L. Wang, H. Wang, J. Feng, X. Jiang, Y. Cao, Y. Sun, L. Duan, Y. Jiao, High‐pressure nitrogen‐extraction and effective passivation to attain highest large‐area perovskite solar module efficiency, Advanced Materials, 32 (2020) 2004979.
Chinese PV Industry Brief: Microquanta Builds 12 MW Ground-Mounted Project with Perovskite Solar Modules. 2022. Available online: https://www.pv-magazine.com/2022/02/18/chinese-pv-industry-brief-microquanta-builds-12-mw-groundmounted-project-with-perovskite-solar-modules (accessed on 29 May 2022).
Y. Kim, T.Y. Yang, R. Suhonen, M. Välimäki, T. Maaninen, A. Kemppainen, N.J. Jeon, J. Seo, Gravure‐printed flexible perovskite solar cells: toward roll‐to‐roll manufacturing, Advanced science, 6 (2019) 1802094.
Dou, J.B. Whitaker, K. Bruening, D.T. Moore, L.M. Wheeler, J. Ryter, N.J. Breslin, J.J. Berry, S.M. Garner, F.S. Barnes, Roll-to-roll printing of perovskite solar cells, ACS Energy Letters, 3 (2018) 2558-2565.
Rong, Y. Ming, W. Ji, D. Li, A. Mei, Y. Hu, H. Han, Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques, The Journal of Physical Chemistry Letters, 9 (2018) 2707-2713.
Su, T. Wu, D. Cui, X. Lin, X. Luo, Y. Wang, L. Han, The application of graphene derivatives in perovskite solar cells, Small Methods, 4 (2020) 2000507.
S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J.T.-W. Wang, Planar perovskite solar cells with long-term stability using ionic liquid additives, Nature, 571 (2019) 245-250.
Wei, F. Ma, R. Wang, S. Dou, P. Cui, H. Huang, J. Ji, E. Jia, X. Jia, S. Sajid, Ion‐migration inhibition by the cation–π interaction in perovskite materials for efficient and stable perovskite solar cells, Advanced Materials, 30 (2018) 1707583.
Wu, X. Liu, X. Luo, X. Lin, D. Cui, Y. Wang, H. Segawa, Y. Zhang, L. Han, Lead-free tin perovskite solar cells, Joule, 5 (2021) 863-886.
Wang, Y. Zhang, F. Gu, Z. Zhao, H. Li, H. Jiang, Z. Bian, Z. Liu, Illumination durability and high-efficiency Sn-based perovskite solar cell under coordinated control of phenylhydrazine and halogen ions, Matter, 4 (2021) 709-721.
Liu, T. Wu, J.-Y. Chen, X. Meng, X. He, T. Noda, H. Chen, X. Yang, H. Segawa, Y. Wang, Templated growth of FASnI 3 crystals for efficient tin perovskite solar cells, Energy & Environmental Science, 13 (2020) 2896-2902.
م. بادروج, مروری بر سلولهای خورشیدی پروسکایت هالید فلز-آلی: ساختار، معماری و روشهای ساخت, نشریه علمی تحقیقات در علوم مهندسی سطح و نانو مواد، دانشگاه آزاد اسلامی واحد اهواز،٢ (١٤٠١) ١-١٩.
-E. Cohen, S. Gamliel, L. Etgar, Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells, APL materials, 2 (2014) 081502.
Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition, Energy & Environmental Science, 7 (2014) 2934-2938.
Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, Controllable Perovskite Crystallization at a Gas–Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%, Journal of the American Chemical Society, 136 (2014) 16411-16419.
Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells, Advanced Functional Materials, 24 (2014) 3250-3258.
T.-W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells, Nano Letters, 14 (2014) 724-730.
Habibi, F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells, Renewable and Sustainable Energy Reviews, 62 (2016) 1012-1031.
T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition, Energy & Environmental Science, 7 (2014) 2944-2950.
Habibi, M. Eslamian, F. Soltani-Kordshuli, F. Zabihi, Controlled wetting/dewetting through substrate vibration-assisted spray coating (SVASC), Journal of Coatings Technology and Research, 13 (2016) 211-225.
Cai, W.-H. Zhang, J. Qiu, Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells, Chinese Journal of Catalysis, 36 (2015) 1183-1190.
J. Kim, B. Bumhee, K. Sukjin, K. Sunkyu, K. Heegon, D.H. Jung, J. Kim, Magnetically-coupled current probing structure consisting of TSVs and RDLs in 2.5D and 3D ICs, in: 2014 International 3D Systems Integration Conference (3DIC), 2014, pp. 1-6.
Li, T. Zhang, Y. Zhao, Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance, Journal of Materials Chemistry A, 3 (2015) 19674-19678.
-Y. Chang, C.-Y. Chu, Y.-C. Huang, C.-W. Huang, S.-Y. Chang, C.-A. Chen, C.-Y. Chao, W.-F. Su, Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell, ACS Applied Materials & Interfaces, 7 (2015) 4955-4961.
Song, W. Wang, P. Sun, W. Ma, Z.-K. Chen, Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells, Applied Physics Letters, 106 (2015) 033901.
Zhu, J. Shi, S. Lv, Y. Yang, X. Xu, Y. Xu, J. Xiao, H. Wu, Y. Luo, D. Li, Q. Meng, Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells, Nano Energy, 15 (2015) 540-548.
Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y.B. Cheng, L. Spiccia, A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells, Angewandte Chemie International Edition, 53 (2014) 9898-99.
Wu, R. Pathak, Q. Qiao, Origin and alleviation of JV hysteresis in perovskite solar cells: A short review, Catalysis Today, 374 (2021) 86-101.
J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 5 (2014) 1511-1515.
S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis, The Journal of Physical Chemistry Letters, 5 (2014) 2357-2363.
-S. Ko, J.-W. Lee, N.-G. Park, 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3, Journal of Materials Chemistry A, 3 (2015) 8808-8815.
-S. Kim, N.-G. Park, Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer, The journal of physical chemistry letters, 5 (2014) 2927-2934.
Zhang, M. Li, Y. Huan, J. Xi, S. Zhang, X. Cheng, H. Wu, W. Peng, Z. Bai, X. Yan, A potassium thiocyanate additive for hysteresis elimination in highly efficient perovskite solar cells, Inorganic Chemistry Frontiers, 6 (2019) 434-442.
D. Pham, C. Zhang, V.T. Tiong, S. Zhang, G. Will, A. Bou, J. Bisquert, P.E. Shaw, A. Du, G.J. Wilson, H. Wang, Tailoring Crystal Structure of FA0.83Cs0.17PbI3 Perovskite Through Guanidinium Doping for Enhanced Performance and Tunable Hysteresis of Planar Perovskite Solar Cells, Advanced Functional Materials, 29 (2019) 1806479.
Zhao, P. Zhu, M. Wang, S. Huang, Z. Zhao, S. Tan, T.-H. Han, J.-W. Lee, T. Huang, R. Wang, J. Xue, D. Meng, Y. Huang, J. Marian, J. Zhu, Y. Yang, A Polymerization-Assisted Grain Growth Strategy for Efficient and Stable Perovskite Solar Cells, Advanced Materials, 32 (2020) 1907769.
Zheng, S. Dai, K. Zhou, G. Liu, B. Zhang, A. Alsaedi, T. Hayat, X. Pan, New-type highly stable 2D/3D perovskite materials: the effect of introducing ammonium cation on performance of perovskite solar cells, Science China Materials, 62 (2019) 508-518.
Zhu, W. Liu, W. Ke, L. Xie, P. Dong, F. Hao, Graphene-modified tin dioxide for efficient planar perovskite solar cells with enhanced electron extraction and reduced hysteresis, ACS applied materials & interfaces, 11 (2018) 666-673.
F. Méndez, S.K.M. Muhammed, E.M. Barea, S. Masi, I. Mora-Sero, Analysis of the UV–Ozone‐Treated SnO2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis, Solar RRL, 3 (2019) 1900191.
Peng, Z. Liu, Reduce the hysteresis effect with the PEIE interface dipole effect in the organic-inorganic hybrid perovskite CH3NH3PbI3-xClx solar cell, Organic Electronics, 62 (2018) 630-636.
Huang, T. Goh, L. McMillon-Brown, J. Kong, Y. Zheng, J. Zhao, Y. Li, S. Zhao, Z. Xu, A.D. Taylor, PEOz-PEDOT: PSS Composite Layer: A Route to Suppressed Hysteresis and Enhanced Open-Circuit Voltage in a Planar Perovskite Solar Cell, ACS applied materials & interfaces, 10 (2018) 25329-25336.
Kranthiraja, V.M. Arivunithi, U.K. Aryal, H.-Y. Park, W. Cho, J. Kim, S.S. Reddy, H.-K. Kim, I.-N. Kang, M. Song, Efficient and hysteresis-less perovskite and organic solar cells by employing donor-acceptor type π-conjugated polymer, Organic Electronics, 72 (2019) 18-24.
Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH 3 NH 3 PbI 3 planar heterojunction solar cells, Nature communications, 5 (2014) 1-7.
Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J.J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L.N. Quan, D.H. Kim, I.G. Hill, P. Maksymovych, E.H. Sargent, Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes, Nature Communications, 6 (2015) 7081.
L. Unger, E.T. Hoke, C.D. Bailie, W.H. Nguyen, A.R. Bowring, T. Heumüller, M.G. Christoforo, M.D. McGehee, Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells, Energy & Environmental Science, 7 (2014) 3690-3698.
Beilsten-Edmands, G.E. Eperon, R.D. Johnson, H.J. Snaith, P.G. Radaelli, Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices, Applied Physics Letters, 106 (2015) 173502.
Zhang, M. Liu, G.E. Eperon, T.C. Leijtens, D. McMeekin, M. Saliba, W. Zhang, M. de Bastiani, A. Petrozza, L.M. Herz, M.B. Johnston, H. Lin, H.J. Snaith, Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells, Materials Horizons, 2 (2015) 315-322.
Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion, Angewandte Chemie International Edition, 56 (2017) 1190-1212.
Philippe, B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E.M.J. Johansson, H. Rensmo, Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation, Chemistry of Materials, 27 (2015) 1720-1731.
Chen, D. Liu, B. Zhang, W. Bi, H. Li, J. Jin, X. Chen, L. Xu, H. Song, Q. Dai, Carrier interfacial engineering by bismuth modification for efficient and thermoresistant perovskite solar cells, Advanced Energy Materials, 8 (2018) 1703659.
Zou, W. Liu, W. Deng, G. Lei, S. Zeng, J. Xiong, H. Gu, Z. Hu, X. Wang, J. Li, An efficient guanidinium isothiocyanate additive for improving the photovoltaic performances and thermal stability of perovskite solar cells, Electrochimica Acta, 291 (2018) 297-303.
K. Baranwal, S. Kanaya, T.A.N. Peiris, G. Mizuta, T. Nishina, H. Kanda, T. Miyasaka, H. Segawa, S. Ito, 100 C thermal stability of printable perovskite solar cells using porous carbon counter electrodes, ChemSusChem, 9 (2016) 2604-2608.
Ito, S. Tanaka, K. Manabe, H. Nishino, Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells, The Journal of Physical Chemistry C, 118 (2014) 16995-17000.
Aristidou , I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S.A. Haque, The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers, Angewandte Chemie International Edition, 54 (2015) 8208-8212.
Jin, C. Chen, H. Li, Y. Cheng, L. Xu, B. Dong, H. Song, Q. Dai, Enhanced performance and photostability of perovskite solar cells by introduction of fluorescent carbon dots, ACS Applied Materials & Interfaces, 9 (2017) 14518-14524.
Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nature Communications, 4 (2013) 2885.
K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K.C. Gödel, Y. Vaynzof, A. Santhala, S.-I. Watanabe, D.J. Hollman, N. Noel, A. Sepe, U. Wiesner, R. Friend, H.J. Snaith, U. Steiner, Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO2, Advanced Functional Materials, 24 (2014) 6046-6055.
Sun, X. Fang, Z. Ma, L. Xu, Y. Lu, Q. Yu, N. Yuan, J. Ding, Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer, Journal of Materials Chemistry C, 5 (2017) 8682-8687.
Cao, X. Lv, P. Zhang, T.T. Chuong, B. Wu, Feng Xet al Plant sunscreen and Co (II)/(III) porphyrins for UV-resistant and thermally stable perovskite solar cells: from natural to artificial, Adv Mater, 30 (2018)1-9.
M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. Van Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano letters, 14 (2014) 2584-2590.
Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells, Journal of Materials Chemistry A, 3 (2015) 8970-8980.
Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells, Solar Energy Materials and Solar Cells. 147 (2016) 255.
S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, T. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite, Energy & Environmental Science, 7 (2014) 1454-1460.
E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science, 7 (2014) 982.
Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides, Nature Chemistry, 7 (2015) 703-711.
Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, S. Yang, Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites, Energy & Environmental Science, 7 (2014) 3326-3333.
-H. Li, P.-S. Shen, K.-C. Wang, T.-F. Guo, P. Chen, Inorganic p-type contact materials for perovskite-based solar cells, Journal of Materials Chemistry A, 3 (2015) 9011-9019.
Zheng, Y.-H. Chung, Y. Ma, L. Zhang, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability, Chemical Communications, 50 (2014) 11196-11199.
Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science, 350 (2015) 944.
H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells, Nano Letters, 13 (2013) 1764-1769.
C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability, Angewandte Chemie International Edition, 53 (2014) 11232-11235.
You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nature Nanotechnology, 11 (2016) 75-81.
-Y. Yu, R.-S. Chiang, H.-L. Hsu, C.-C. Yang, C.-P. Chen, Perovskite photovoltaics featuring solution-processable TiO2 as an interfacial electron-transporting layer display to improve performance and stability, Nanoscale, 6 (2014) 11403-11410.
O. Reese, S.A. Gevorgyan, M. Jørgensen, E. Bundgaard, S.R. Kurtz, D.S. Ginley, D.C. Olson, M.T. Lloyd, P. Morvillo, E.A. Katz, A. Elschner, et.al. Consensus stability testing protocols for organic photovoltaic materials and devices, Solar Energy Materials and Solar Cells, 95 (2011) 1253-1267.
Lyu, J.-H. Yun, P. Chen, M. Hao, L. Wang, Addressing Toxicity of Lead: Progress and Applications of Low-Toxic Metal Halide Perovskites and Their Derivatives, Advanced Energy Materials, 7 (2017) 1602512.
Shao, J. Liu, G. Portale, H.-H. Fang, G.R. Blake, G.H. ten Brink, L.J.A. Koster, M.A. Loi, Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency, Advanced Energy Materials, 8 (2018) 1702019.
Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites, Acta Crystallographica Section B: Structural Science, 64 (2008) 702-707.
Chatterjee, A.J. Pal, Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells, Journal of Materials Chemistry A, 6 (2018) 3793-3823.
F. Hoefler, G. Trimmel, T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review, Monatshefte für Chemie-Chemical Monthly, 148 (2017) 795-826.
K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects, Chemical reviews, 119 (2019) 3036-3103.
R. Filip, F. Giustino, Computational screening of homovalent lead substitution in organic–inorganic halide perovskites, The Journal of Physical Chemistry C, 120 (2015) 166-173.
Wang, D. Yang, C. Wu, M. Sanghadasa, S. Priya, Recent progress in fundamental understanding of halide perovskite semiconductors, Progress in Materials Science,106 (2019) 100580.
Miao, F. Zhang, Recent progress on highly sensitive perovskite photodetectors, Journal of Materials Chemistry C, 7 (2019) 1741-1791.
Ke, M.G. Kanatzidis, Prospects for low-toxicity lead-free perovskite solar cells, Nature communications, 10 (2019) 965.
Saliba, J.P. Correa‐Baena, M. Grätzel, A. Hagfeldt, A. Abate, Perovskite solar cells: from the atomic level to film quality and device performance, Angewandte Chemie International Edition, 57 (2018) 2554-2569.
Chen, N. De Marco, Y.M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, 10 (2015) 355-396.
Leijtens, R. Prasanna, A. Gold-Parker, M.F. Toney, M.D. McGehee, Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites, ACS Energy Letters, 2 (2017) 2159-2165.
K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications, Energy & Environmental Science, 7 (2014) 3061-3068.
C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry, 52 (2013) 9019-9038.
Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm, The Journal of Physical Chemistry Letters, 5 (2014) 1004-1011.
Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells, Nature Photonics, 8 (2014) 489.
H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, Lead‐free halide perovskite solar cells with high photocurrents realized through vacancy modulation, Advanced Materials, 26 (2014) 7122-7127.
P. Marshall, R.I. Walton, R.A. Hatton, Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices, Journal of Materials Chemistry A, 3 (2015) 11631-11640.
Kapil, T.S. Ripolles, K. Hamada, Y. Ogomi, T. Bessho, T. Kinoshita, J. Chantana, K. Yoshino, Q. Shen, T. Toyoda, T. Minemoto, T.N. Murakami, H. Segawa, S. Hayase, Highly Efficient 17.6% Tin–Lead Mixed Perovskite Solar Cells Realized through Spike Structure, Nano Letters, 18 (2018) 3600-3607.
Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M.M. Junda, C. Wang, C.S. Jiang, M. Al‐Jassim, Reducing Saturation‐Current Density to Realize High‐Efficiency Low‐Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells, Advanced Energy Materials, 9 (2019) 1803135.
-B. Song, T. Yokoyama, C.C. Stoumpos, J. Logsdon, D.H. Cao, M.R. Wasielewski, S. Aramaki, M.G. Kanatzidis, Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells, Journal of the American Chemical Society, 139 (2017) 836-842.
Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian, C. Huang, Mixed‐Organic‐Cation Tin Iodide for Lead‐Free Perovskite Solar Cells with an Efficiency of 8.12%, Advanced Science, 4 (2017) 1700204.
M. Tsai, N. Mohanta, C.Y. Wang, Y.P. Lin, Y.W. Yang, C.L. Wang, C.H. Hung, E.W.G. Diau, Formation of Stable Tin Perovskites Co‐crystallized with Three Halides for Carbon‐Based Mesoscopic Lead‐Free Perovskite Solar Cells, Angewandte Chemie International Edition, 56 (2017) 13819-13823.
Ke, C.C. Stoumpos, J.L. Logsdon, M.R. Wasielewski, Y. Yan, G. Fang, M.G. Kanatzidis, TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells, Journal of the American Chemical Society, 138 (2016) 14998-15003.
Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L.N. Quan, Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance, Journal of the American Chemical Society, 139 (2017) 6693-6699.
Ran, J. Xi, W. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, Z. Wu, Bilateral interface engineering toward efficient 2D–3D bulk heterojunction tin halide lead-free perovskite solar cells, ACS Energy Letters, 3 (2018) 713-721.
Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang, E.W.-G. Diau, Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells, Energy & Environmental Science, 11 (2018) 2353-2362.
Ke, C.C. Stoumpos, I. Spanopoulos, M. Chen, M.R. Wasielewski, M.G. Kanatzidis, Diammonium cations in the FASnI3 perovskite structure lead to lower dark currents and more efficient solar cells, ACS Energy Letters, 3 (2018) 1470-1476.
-B. Song, T. Yokoyama, S. Aramaki, M.G. Kanatzidis, Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive, ACS Energy Letters, 2 (2017) 897-903.
Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie, P.P. Boix, S. Mhaisalkar, N. Mathews, Impact of anionic Br–substitution on open circuit voltage in lead free perovskite (CsSnI3-xBr x) solar cells, The Journal of Physical Chemistry C, 119 (2015) 1763-1767.
Li, J. Li, J. Li, J. Fan, Y. Mai, L. Wang, Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K, Journal of materials chemistry A, 4 (2016) 17104-17110.
N.U. R. H. Kretsinger, E. A. Permyakov, Encyclopedia of Metalloproteins, Springer, New York, 2013.
Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, Lead-free germanium iodide perovskite materials for photovoltaic applications, Journal of Materials Chemistry A, 3 (2015) 23829-23832.
Kopacic, B. Friesenbichler, S.F. Hoefler, B. Kunert, H. Plank, T. Rath, G. Trimmel, Enhanced performance of germanium halide perovskite solar cells through compositional engineering, ACS Applied Energy Materials, 1 (2018) 343-347.
-G. Ju, J. Dai, L. Ma, X.C. Zeng, Lead-free mixed tin and germanium perovskites for photovoltaic application, Journal of the American Chemical Society, 139 (2017) 8038-8043.
Cheng, T. Wu, J. Zhang, Y. Li, J. Liu, L. Jiang, X. Mao, R.-F. Lu, W.-Q. Deng, K. Han, (C6H5C2H4NH3) 2GeI4: a layered two-dimensional perovskite with potential for photovoltaic applications, The journal of physical chemistry letters, 8 (2017) 4402-4406.
Ma, M.-G. Ju, J. Dai, X.C. Zeng, Tin and germanium based two-dimensional Ruddlesden–Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications, Nanoscale, 10 (2018) 11314-11319.
C. Lee, T.N. Huq, J.L. Macmanus-Driscoll, R.L.Z. Hoye, Research Update: Bismuth-Based Perovskite-Inspired Photovoltaic Materials. APL Mater. 6 (2018) 12–14.
C.Y. C. Y. Huang, G. Cui, Z. Liu, S. Pang, H. Xu, CN Patent, 103943368.
B. Dai, S. Xu, J. Zhou, J. Hu, K. Huang, M. Xu, Lead-free, stable, and effective double FA4GeIISbIIICl12 perovskite for photovoltaic applications, Solar Energy Materials and Solar Cells, 192 (2019) 140-146.
Ito, M.A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air, The journal of physical chemistry letters, 9 (2018) 1682-1688.
Lyu, J.-H. Yun, M. Cai, Y. Jiao, P.V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites, Nano Research, 9 (2016) 692-702.
W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application, Advanced materials, 27 (2015) 6806-6813.
Zhang, G. Wu, Z. Gu, B. Guo, W. Liu, S. Yang, T. Ye, C. Chen, W. Tu, H. Chen, Nano Res. 9 (2016) 2921.
Okano, Y. Suzuki, Gas-assisted coating of Bi-based (CH3NH3) 3Bi2I9 active layer in perovskite solar cells, Materials letters, 191 (2017) 77-79.
M. Jain, D. Phuyal, M.L. Davies, M. Li, B. Philippe, C. De Castro, Z. Qiu, J. Kim, T. Watson, W.C. Tsoi, An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free,(CH3NH3) 3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability, Nano Energy, 49 (2018) 614-624.
A. Yelovik, A.V. Mironov, M.A. Bykov, A.N. Kuznetsov, A.V. Grigorieva, Z. Wei, E.V. Dikarev, A.V. Shevelkov, Iodobismuthates containing one-dimensional BiI4–anions as prospective light-harvesting materials: synthesis, crystal and electronic structure, and optical properties, Inorganic Chemistry, 55 (2016) 4132-4140.
J. Lehner, D.H. Fabini, H.A. Evans, C.-A. Hébert, S.R. Smock, J. Hu, H. Wang, J.W. Zwanziger, M.L. Chabinyc, R. Seshadri, Crystal and electronic structures of complex bismuth iodides A 3Bi2I9 (A= K, Rb, Cs) related to perovskite: aiding the rational design of photovoltaics, Chemistry of Materials, 27 (2015) 7137-7148.
M. Fabian, S. Ardo, Hybrid organic–inorganic solar cells based on bismuth iodide and 1, 6-hexanediammonium dication, Journal of Materials Chemistry A, 4 (2016) 6837-6841.
Sun, S. Tominaka, J.-H. Lee, F. Xie, P.D. Bristowe, A.K. Cheetham, Synthesis, crystal structure, and properties of a perovskite-related bismuth phase,(NH4) 3Bi2I9, APL Materials, 4 (2016) 031101.
T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X= Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors, Chemistry of Materials, 28 (2016) 1348-1354.
H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, Journal of the American chemical society, 138 (2016) 2138-2141.
Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D.M. Evans, M.A. Carpenter, P.D. Bristowe, A.K. Cheetham, The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA) 2 KBiCl 6 (MA= methylammonium), Materials Horizons, 3 (2016) 328-332.
Öz, J.-C. Hebig, E. Jung, T. Singh, A. Lepcha, S. Olthof, F. Jan, Y. Gao, R. German, P.H.M. van Loosdrecht, Zero-dimensional (CH3NH3) 3Bi2I9 perovskite for optoelectronic applications, Solar Energy Materials and Solar Cells, 158 (2016) 195-201.
Abulikemu, S. Ould-Chikh, X. Miao, E. Alarousu, B. Murali, G.O.N. Ndjawa, J. Barbé, A. El Labban, A. Amassian, S. Del Gobbo, Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH 3 NH 3) 3 Bi 2 I 9, Journal of Materials Chemistry A, 4 (2016) 12504-12515.
R. Filip, S. Hillman, A.A. Haghighirad, H.J. Snaith, F. Giustino, Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment, The journal of physical chemistry letters, 7 (2016) 2579-2585.
H. Heo, M.H. Lee, D.H. Song, C.E. Song, J.-J. Lee, K.-H. Hong, S.H. Im, Planar Type Trivalent Bismuth Based Pb-Free Perovskite Solar Cells, Nanoscience and Nanotechnology Letters, 10 (2018) 591-595.
Huang, Z. Gu, X. Zhang, G. Wu, H. Chen, Lead-free (CH3NH3) 3Bi2I9 perovskite solar cells with fluorinated PDI films as organic electron transport layer, Journal of Alloys and Compounds, 767 (2018) 870-876.
Y. Y. Kim, A. Jain, O. Voznyy, G. H. Kim, M. Liu, L. N. Quan, F. P. G. de Arquer, R. Comin, J. Z. Fan, E. H. Sargent, Angew. Chem., Int. Ed. 55 (2016) 958666.
Greul, M.L. Petrus, A. Binek, P. Docampo, T. Bein, Highly stable, phase pure Cs 2 AgBiBr 6 double perovskite thin films for optoelectronic applications, Journal of Materials Chemistry A, 5 (2017)19972.
Kulkarni, T. Singh, M. Ikegami, T. Miyasaka, Photovoltaic enhancement of bismuth halide hybrid perovskite by N-methyl pyrrolidone-assisted morphology conversion, RSC advances, 7 (2017) 9456-9460.
Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I.G. Hill, Y. Yan, D.B. Mitzi, Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor, Chemistry of Materials, 27 (2015) 5622-5632.
C. Harikesh, H.K. Mulmudi, B. Ghosh, T.W. Goh, Y.T. Teng, K. Thirumal, M. Lockrey, K. Weber, T.M. Koh, S. Li, Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics, Chemistry of Materials, 28 (2016) 7496-7504.
-C. Hebig, I. Kuhn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3) 3Sb2I9 thin films for photovoltaic applications, ACS energy letters, 1 (2016) 309-314.
Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, H. Han, Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells, Journal of the American Chemical Society, 140 (2018) 1019-1027.
Zuo, L. Ding, Lead‐free Perovskite Materials (NH4) 3Sb2IxBr9− x, Angewandte Chemie, 129 (2017) 6628-6632.
Vargas, E. Ramos, E. Pérez-Gutiérrez, J.C. Alonso, D. Solis-Ibarra, A direct bandgap copper–antimony halide perovskite, Journal of the American Chemical Society, 139 (2017) 9116-9119.
M. Boopathi, P. Karuppuswamy, A. Singh, C. Hanmandlu, L. Lin, S.A. Abbas, C.C. Chang, P.C. Wang, G. Li, C.W. Chu, Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites, Journal of Materials Chemistry A, 5 (2017) 20843-20850.
-C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, Optoelectronic Properties of (CH3NH3)3Sb2I9 Thin Films for Photovoltaic Applications, ACS Energy Letters, 1 (2016) 309-314.
Nie, A. Mehta, B.-w. Park, H.-W. Kwon, J. Im, S.I. Seok, Mixed sulfur and iodide-based lead-free perovskite solar cells, Journal of the American Chemical Society, 140 (2018) 872-875.
A. Adonin, L.A. Frolova, M.N. Sokolov, G.V. Shilov, D.V. Korchagin, V.P. Fedin, S.M. Aldoshin, K.J. Stevenson, P.A. Troshin, Antimony (V) complex halides: lead‐free perovskite‐like materials for hybrid solar cells, Advanced Energy Materials, 8 (2018) 1701140.
C. Harikesh, B. Wu, B. Ghosh, R.A. John, S. Lie, K. Thirumal, L.H. Wong, T.C. Sum, S. Mhaisalkar, N. Mathews, Doping and Switchable Photovoltaic Effect in Lead‐Free Perovskites Enabled by Metal Cation Transmutation, Advanced Materials, 30 (2018) 1802080.
P. Cui, K.-J. Jiang, J.-H. Huang, Q.-Q. Zhang, M.-J. Su, L.-M. Yang, Y.-L. Song, X.-Q. Zhou, Cupric bromide hybrid perovskite heterojunction solar cells, Synthetic Metals, 209 (2015) 247-250.
Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, Lead-free MA2CuCl x Br4–x hybrid perovskites, Inorganic chemistry, 55 (2016) 1044-1052.
Li, X. Zhong, Y. Hu, B. Li, Y. Sheng, Y. Zhang, C. Weng, M. Feng, H. Han, J. Wang, Organic–inorganic copper (II)-based material: A low-toxic, highly stable light absorber for photovoltaic application, The Journal of Physical Chemistry Letters, 8 (2017) 1804-1809.
M. Elseman, A.E. Shalan, S. Sajid, M.M. Rashad, A.M. Hassan, M. Li, Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3) 2CuX4-based perovskite solar cells from experimental and theoretical view, ACS applied materials & interfaces, 10 (2018) 11699-11707.