Effect of Outlet Submergence in Bottom Outlet on Aeration between Emergency and Service Gates at high Dams
الموضوعات :مهدی جورابلو 1 , مهدی فولادی پناه 2 , فاطمه ناصری 3 , حامد سرکرده 4 , مرتضی ماروسی 5
1 - استادیار، گروه مهندسی آب، واحد گرمسار، دانشگاه آزاد اسلامی، گرمسار، ایران.
2 - استادیار، گروه عمران، واحد رامهرمز، دانشگاه آزاد اسلامی، رامهرمز، ایران.
3 - دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران
4 - استادیار گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران.
5 - کارشناس ارشد پژوهش، گروه سازه های هیدرولیکی، موسسه تحقیقات آب وزارت نیرو، تهران، ایران.
الکلمات المفتاحية: Cavitation, Bottom Outlet, Aeration Coefficient, Outlet Submergence, Numerical and Experimental Modeling, تخلیه کننده تحتانی, ضریب هوادهی, خلازایی, استغراق خروجی, مدلسازی عددی و آزمایشگاهی,
ملخص المقالة :
Using bottom outlets for drain and regulation of water level in reservior has significant importance in performance mahagment of dam. Amount of service and emergency gates opening have important role in pressure, velocity and discharge coefficient variations and finally dam performance. In the present research, flow aeration between emergency and service gates was studied with different hydraulic conditions in Karron 4 and GhizGhalasi dams with free and submerged downstream condtirions. Aeration coefficient was measured experimentally. Numerical simulations were also performed to analyze the pressure fluctuation in stilling basin after the gate using Flow3D software. Results showed that outlet submergence has reductive effect about 50% on flow aeration rate. On the other words, the submergence condition at outlet, will lead to increase cavitation occurrence probability, and therfore larger air vent will be needed. Also it was senn that aeration decreased pressure flaccuation on the stilling basin that it leads to eliminate cavitation occurance.
خانآرمویی، م.ر.، رحیمزاده، ح. و سرکرده ح. (1393). تاثیر زاویه آبگیری بر عمق استغراق بحرانی و قدرت گرداب. مجله علمی-پژوهشی مهندسی مکانیک مدرس، (14)10: 42-35.
غزالی، ف.، صالحی نیشابوری، ا.ا.، و کاویانپور، م.ر. (1390). تحلیل عددی تأثیر هندسه مجرا بر هوادهی جریان در تخلیه کننده تحتانی سد. اولین کنفرانس بین المللی و سومین کنفرانس ملی سد و نیروگاههای برق آبی (ص 80-62). تهران، 19 و 20 بهمن، تهران، ایران.
مردانی، م.، رحیمزاده، ح. و سرکرده ح. (1394). تحلیل و بررسی استفاده از بلوک در عملکرد حوضچههای آرامش. مجله علمی-پژوهشی مهندسی مکانیک مدرس، مقاله 8، (6)15: 41-31.
Amiri, S. M., Zarrati, A. R., Roshan, R., and Sarkardeh, H. (2011). Prevention of Vortex at Power Intakes by Horizontal Plates, Proceedings of the ICE, Journal of Water Management, 164(4), pp: 193-200.
Campbell, F. B., Guyton, B. (1953). Air demand in gated outlet works. In Proceedings of the 5th International Association for Hydraulic Research (IAHR) and American Society of Civil Engineers (ASCE) Joint, Reston, VA, USA, pp: 529–533.
Jorabloo, M., Maghsoodi, R. and Sarkardeh, H. (2011). 3D Simulation of Flow over Flip Buckets at Dams, Journal of American Science, 7(6), pp: 931-936.
Kalinske, A. A., Robertson, J. W. (1943). Closed conduit flow. ASCE Trans. 108, pp: 1435-1447.
Kavianpour, M. R., Rajabi, E. (2005). Air demand downstream of bottom outlet leaf gates. Proceedings of the 73rd Annual Meeting of ICOLD (pp 34-42), Tehran, Iran, 2005
Khodashenas, S. R., Sarkardeh, H., Marosi, M., and Safavi, K. H. (2010). Vortex Study at Orifice Spillways of Karun III Dam, Journal of Dam Engineering, 2 , pp:131-142.
Maghsoodi, R., Roozgar, M.S., Chau, K.W. and Sarkardeh, H. (2012). 3D Simulation of Dam Break Flows, Journal of Dam Engineering, 2, pp: 1-17.
Najafi, M. R., Zarrati, A. R. (2010). Numerical simulation of air–water flow in gated tunnels, Water Management, 163, pp: 289-295.
Nazari, O., Jabbari, E., and Sarkardeh, H. (2015). Dynamic Pressure Analysis at Chute Flip Buckets of Five Dam Model Studies, International Journal of Civil Engineering, Transaction A: Civil Engineering, 13(1), pp: 45-54.
Rahimzadeh, H., Abdolahpour, M., Roshan, R. and Sarkardeh, H. (2012). Hydraulic Optimization of Flow Over a Gated Spillway, Journal of Dam Engineering, 22(4): pp:1.
Roshan, R., Azamathulla, H. M. D., Marosi, M., Sarkardeh, H., Pahlavan, H. and Ghani, A. B. (2010). Hydraulics of Stepped Spillways with Different Numbers of Steps, Journal of Dams and Reservoirs (ICE), 20, 3, pp:131-136.
Shamsai , A., Soleymanzadeh, R. (2006). Numerical simulation of Air-Water flow in bottom outlet, International Journal of Civil Engineering, 4(1), pp: 14-33.
Sharma, H. R. (1976). Air-entrainment in high head gated conduits. Journal of Hydraulic Division, 102, 11, pp:1629–1646.
Taghvaei, S.M., Roshan, R., Safavi, K.H., and Sarkardeh, H. (2012). Anti-Vortex Structures at Hydropower Dams, International Journal of the Physical Sciences, 7(28), pp: 5069-5077.
Tullis, B. P., Larchar, J. (2011). Determining air demand for small- to medium-sized embankment dam low-level outlet works. Journal of Irrigation and Drain Engineering, 137, pp: 793-800.
U.S. Army Corps of Engineers (1964). Hydraulic Design Criteria: Air Demand-regulated Outlet Works; USACE: Washington, DC, USA.
Vischer, D. L. Hager, W. H. (1997). Dam Hydraulics. Wiley, Chichester, pp. 190–213.
Wisner, P. (1965). On the role of the Froude criterion for the study of air entrainment in high velocity flows. Proceedings of the 11th IAHR Congress, USSR, Leningrad.