Influence of Zeolite and Biological Fertilizer under Different Irrigation Regime on Quantitative and Qualitative Traits of Sugar beet (Beta Vulgaris L.)
الموضوعات :Tahereh Hasanabadi 1 , Davood Habibi 2 , Hamideh Khalaj 3
1 - Young Researchers and Elites Club, Tehran North Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Agronomy and Plant Breeding, Karaj Branch, Islamic Azad University, Karaj, Iran.
3 - Department of Agriculture, Payame-Noor University, P.O. Box: 19395-3697, Tehran, Iran.
الکلمات المفتاحية: nitrogen, Bacteria, root yield, Sugar content,
ملخص المقالة :
In order to study the effect of zeolite and biologic fertilizers application under different irrigation regime on yield and quantitative traits in sugar beet, a research project was conducted according split-split plot experiment based on randomized complete block design with four replicates. The main factor included irrigation regime at two levels (Normal and stress), sub factor included zeolite application at two levels (with and without application) and biological fertilizers at four levels [1- Non application of mycorrhiza, 2-Application of mycorrhiza 3- Non -inoculation of bacteria 4- Inoculation of bacteria (Pseudomonas, Azotobacter, Azospirillum)] belonged to sub-sub factor. Analysis of variance results showed that interaction effect of zeolite and mycorrhiza and non-application of bacteria under normal irrigation regime on all measured traits (Instead potassium and nitrogen content) was significant. Mean comparison of treatments indicated that NZ1M1B0 treatment (Zeolite and mycorrhiza application and non-inoculation of bacteria under normal irrigation regime) had highest amount of root yield (73340 kg.ha-1), white sugar content (11.88%) and white sugar content (16.47%) but treatments of NM1B0 (Mycorrhiza application and non-inoculation of bacteria under normal irrigation regime), DM0B0 (Non-application of mycorrhiza and bacteria under stress irrigation regime) and DZ0M0B0 (Non-application of zeolite, mycorrhiza and bacterial under stress irrigation regime) had highest amount of potassium content (4.45 meq.100g-1 sugar), amino-nitrogen (2.09 meq.100g-1 sugar) and sodium content (11.95 meq.100g-1 sugar), respectively. According to results of this research mycorrhiza inoculation and use of zeolite under water deficient conditions, caused improving sugar yield and consequently decreasing negative elements (Na, K, and N) under drought stress condition.
Abo-El-Goud, S. M. M. 2000. Agronomic studies on fodder beet. Ph.D. Thesis. Faculty of Agriculture. Mansoura University. Egypt. 98 pp.
Amin, G. A., A. E. Badr. and M. H. M. Afifi. 2013. Root Yield and quality of sugar beet (Beta vulgaris L.) in response to bio-fertilizer and foliar application with micronutrients. World App. Sci. J. 27(11): 1385-1389.
Brown, K. F, A. B. Messem, R. J. Dunham. and P. V. Biscoe. 1987. Effect of drought on growth and water use of sugar beet. J. Agric. Sci. 109: 421-435.
Cattivelli, L., F. Rizza, F. W. Badeck, E. Mazzucotelli, A. M. Mastrangelo, E. Francia, C. Mare, A. Tondelli. and A. M. Stanca. 2008. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 105: 1-14.
Clover, G., H. Smith. and K. Jaggard. 1998. The crop under stress. British Sugar Beet Review. 66(3): 17-19.
Clover, G. R. G., G. H. Smith, S. N. Azam-Ali. and K. W. Jaggard. 1999. The effects of drought on sugar beet growth in isolation and in combination with beet yellows virus infection. J. Agri. Sci. Cambridge. 133: 251-261.
Cooke, D. and R. Scott. 1993. The Sugar Beet Crop: Science into Practice. Chapman and Hill. New York. 98 pp.
Doubkova, P., E. Vlasakova. and R. Sudova. 2013. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil. J. DOI: 10.1007/ s11104-013-1610-7. Online publication date: 1 Jan 2013.
El-Fouly, M. M., A. L. Rezk, M. A. Omer, E. E. Shalaby. and A. B. El-Nasharty. 2005. Effect of potassium and foliar application of micronutrients on the yield and quality of sugar beet grown in calcareous soil. Egyptian J. Agric. Res. 2(2): 775-784.
El-Ghareib, E. A., M. A. El-Hawary, A. M. A. El-Shafai. and Y. E. E. El-Rayess. 2012. Effect of Farmyard Manure, Plant Density and Bio-Fertilizer Treatments on Growth and Yield of Sugar Beet. J. Plant Production. 3(7): 2173-2187.
Farnia, A. and Gh. Hashemi. 2015. Correlation between yield and other treats in sugar beet (Beta vulgaris L.) under application of different bio-fertilizers and irrigation. Int. J. Bio. Sci. 6(3): 146-152.
Favilli, F., R. Pastorelli. and A. Gori. 1993. Response of sugar beet to Azospirillum bacterization in field experiments. Agric. Mediterr. J. 123: 281-285.
Ghareib, H. S. and A. S. El-Henawy. 2011. Response of sugar beet (Beta vulgaris L) to irrigation regime, nitrogen rate and micronutrients application. Alex. Sci. Exchange J. 32: 140-156.
Hashemi, Gh., A. Farnia, M. Rahnamaeian. and M. Shaban. 2014. Changes in carbohydrates and sugar yield in sugar beet (Beta Vulgaris L.) under different bio-fertilizers and irrigation closed time. Int. J. Adv. Biol. Biom. Res. 2(8): 2350-2355.
Ilyas, N., A. Bano. and S. Iqbal. 2008. Variation in Rhizobiumand Azospirillum strains isolated from maize growing in arid and semiarid areas. Inter. J. Agri. Biol.10: 612-8.
Jafarnia, B., R. Ghorbani, A. Zare Feizabady. and A. R. Ghaemi. 2013. Impact of crop density and soil fertilization on sugar beet. Intl. J. Agri. Crop Sci. 5(24): 2991-2999.
Kavoosi, M. 2007.Effects of zeolite application on rice yield, nitrogen recovery, and nitrogen use efficiency. Communications in Soil Science and Plant Analysis. England. 38(2): 69-76.
Kenter, C., C. M. Hoffmann. and B. Marlander. 2006. Effects of weather variables on sugar beet yield development (Beta vulgaris L.). Euro. J. Agron. 24(1): 62-69.
Mahmoodi, R., H. Maralian. and A. Aghabarati. 2008. Effects of limited irrigation on root yield and quality of sugar beet (Beta vulgaris L.). African Journal of Biotechnology. 7(24): 4475-4478.
Manivannan, P., C. A. Jaleel, A. Kishorekumay, B. Sankar, R. Somasundaram, R. Sridharanand. and R. Panneerselvam. 2007. Drought stress induced changes in the biochemical parameters and photosynthetic pigments of cotton (Gossypium hirsutum L.). Indian J. Appl. Pure Biol. 22: 369-372.
Mayak, S., T. Tirosh. and B. Glick. 2004. Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. J. 166: 525-530.
Mrkovack, N. and V. Milic. 2001. Use of Azotobacter chroococcum as potentially useful in agricultural application. Annals of Microbiology. J. 51: 145-158.
Ober, E. 2001. The search for drought tolerance in sugar beet. British Sugar Beet Review. J. 69(1): 40-43.
Paknejad, F., M. Mirakhori, M. Jami Al-Ahmadi, M. R. Tookalo, A. R. Pozoki. and P. Nazeri. 2009. Physiological response of soybean (Glycine max L.) to foliar application of methanol under different soil moistures. American J. Agri. Biol. Sci. 4(4): 311-318.
Payne, J. H .1968. Sugar cane factory analytical control. The official methods of Hawaiian sugar technologists. 5th revised Ed.; produced by the Factory Methods Committee of the Hawaiian Sugar Technologists. Elsevier Publications. 63 pp.
Rassam, Gh., M. Dashti, A. R. Dadkhah. and A. Khoshnood Yazdi. 2015. Root yield and quality of sugar beet in relation to foliar application of micronutrients. Annals of West University of Timisoara, Ser. Biology. J. 18(2): 87-94.
Rashidi, M. and S. Abbassi. 2011. Influence of different tillage methods on root yield, yield components and some quality characteristics of sugar beet (Beta vulgaris L.). Int. J. Agric. Biol. 13(5): 796–800.
Rinaldi, M. and V. V. Alessandro. 2006. The response of autumn and spring sown sugar beet (Beta vulgaris L.) to irrigation in southern Italy: Water and radiation use efficiency. Field crops Research. 95(2-3): 15.
Roger-Estrade, J., C. Anger, M. Bertrand. and G. Richard. 2010. Tillage and soil ecology: partners for sustainable agriculture. Soil and Tillage Research. J. 111(1): 33-40.
Ruiz-Sanchez, M., R. Aroca, Y. Muñoz, E. Armada, R. Polon. and J. M. Ruiz-Lozano. 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the anti oxidative response of rice plants subjected to drought stress. J Plant Physiol. 167: 862–869.
Ruiz-Lozano, J. M. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies of Mycorrhiza. 13: 309–317.
Ruiz-Lozano, J. M. and R. Aroca. 2010. Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Seckbach, J., Grube, M. (Ed) Symbioses and stress: Joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. Springer Science. Business Media. Dordrecht. Pp: 359–374.
Sadeghian, S. Y., H. Fasli, M. Parvizi Almani, D. F. Taleghani. and R. Mohammadian. 1999. Drought tolerance screening for sugar beet improvement. A paper presented in the 1st International Congress on Sugar and Integrated Industries Present and Futre . Feb. 15th-18th. Luxure, Egypt.
Sadeghi-Shoae, M., F. Paknejad, H. Hassanpour, H. Mozafari, M. Moharram Zadeh. and M. R. Tookalloo. 2013. Effect of intermittent furrow irrigation, humic acid and deficit irrigation on water use efficiency of sugar beet. Annals of Biological Research. J. 4(3): 187-193.
Sawas, D., K. Samantouros, D. Paralemos, G. Vlachakos. and M. Stamatakis. 2004. Yield and nutrient status in the root environment of tomatoes (Lycopersicon Esculentum L.) grown on chemically active and inactive inorganic substrates. Acta. Hortic. 644: 377-383.
Singh-Brar, N., B. Singh Dhillon, K. S. Saini. and P. K. Sharma. 2015. Agronomy of sugar beet cultivation. Agricultural Reviews. J. 36 (3): 184-197.
Soltanmorad, Kh., D. Fathollah Taleghani. and H. Hassanpour Darvishi. 2015. The effect of methanol foliar application on the tolerance of sugar beet cultivars to drought stress. Biological Forum. J. 7(1): 1502-1507.
Tohidi Moghadam, H. R., A. H. Shirani Rad, G. NourMohammadi, D. Habibi. and M. Mashhadi AkbarBoojar. 2009. Effect of super absorbent application on antioxidant enzyme activities in canola (Brassica napus L.) cultivars under water stress conditions. Ame. J. Agri. Biol. Sci. 4: 215-223.
Wittenmayer, L. and G. Schilling. 1998 . Behavior of sugar-beet plants (Beta vulgaris L. sp. vulgaris var. altissima Doell) under conditions of changing water supply: Abscisic acid as indicator. J. Agron. Crop Sci. 180(4): 65-72.
Yamaguchi-Shinozaki, K., M. Kasuga, Q. Liu, K. Nakashima, Y. Sakuma, H. Abe, Z. K. Shinwari, M. Seki. and K. Shinozaki. 2002. Biological mechanisms of drought stress response. JIRCAS. Working Report. Pp: 1-8.
Yooyongwech, S., N. Phaukinsang, S. Cha-Um. and K. Supaibulwatana. 2013. Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulator. J. 69: 285–293.
Zahedi, H., Gh. Noormohammadi, A. H. Shirani-Rad, D. Habibi, M. Mashhadi-Akbar-Boojar. 2009. The effects of Zeolite and foliar applications of selenium on growth, yield and yield components of three canola cultivars under drought stress. World Appl. Sci. J. 7(2): 255-262.
Zahedi, H. and H. R. Tohidi Moghadam. 2011. Effect of drought stress on antioxidant enzymes activities with zeolite and selenium application in canola cultivars. Research on Crops. J. 12(2): 388-392.