پیش بینی LD50 در مشتقات کربوکسیلیک اسید با مدل های رگرسیون خطی چندگانه و شبکه عصبی مصنوعی
الموضوعات :عصمت محمدی نسب 1 , فهیمه محمایی 2
1 - داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ اراک، ﮔﺮوه شیمی، اراک، ایران
2 - دانشجوی دکتری شیمی فیزیک، گروه شیمی، واحد اراک، دانشگاه آزاداسلامی، اراک، ایران
الکلمات المفتاحية: واژههای کلیدی: "سمیت" "روش رگرسیون خطی چندگانه ", "شبکه عصبی مصنوعی", "مشتقات کربوکسیلیک اسید ", Key words:" Toxicity", " Multiple linear regression method", "Artificial neural network", "Carboxylic acid derivatives,
ملخص المقالة :
در این تحقیق، از طریق مطالعه رابطه ساختار-فعالیت به پیش بینی مقادیر سمیت مشتقات کربوکسیلیک اسید پرداخته شده است. ابتدا مقادیر LD50 برای مجموعه ای از ترکیبات مورد مطالعه با استفاده از منابع علمی معتبر استخراج گردید و ساختار آنها به کمک نرمافزار گوس ویو 05 رسم شده و با نرمافزار گوسین09 به روش هارتری فاک و سری پایه G21-3 بهینه شدند. سپس با استفاده از نرم افزار دراگون توصیفگرهای مولکولی استخراج گردیدند. به کمک ژنتیک الگوریتم و روش برگشتی توصیفگرهای نامناسب حذف شده و بهترین آنها برای مدلهای رگرسیون خطی چندگانه و شبکه عصبی مصنوعی مورد استفاده قرار گرفت. دقت پیش بینی مدل نهایی توسط ضرایب آماری مورد بحث قرار گرفت. اعتبارسنجی تقاطعی و نیز اعتبارسنجی خارجی مدل های پیش بینی همبستگی بسیار بالا را بین مقادیر تجربی و مقادیر پیش بینی گروه های آموزش آزمون و اعتبارسنجی در روش شبکه عصبی مصنوعی نشان داد. مشخص گردید که روش شبکه عصبی مصنوعی با خطای کمتر و ضریب تعیین بالاتر نسبت به روش رگرسیون خطی چندگانه از برتری قابل توجه ای برخوردار می باشد. مدل پیشنهادی می تواند برای پیش بینی log(LD50) ترکیبات جدید کربوکسیلیک اسید مفید واقع گردد.
_||_