مطالعه ارتباط کمی ساختار- فعالیت برای پیشبینی شاخص LD50 در آفتکشهای ارگانوفسفات
الموضوعات :عصمت محمدی نسب 1 , مینا کیانپور 2
1 - داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ اراک، ﮔﺮوه شیمی، اراک، ایران
2 - داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ اراک، ﮔﺮوه شیمی، اراک، ایران
الکلمات المفتاحية: Artificial Neural Network, QSAR, Multiple Linear Regression Method, واژههای کلیدی: ", ترکیبات ارگانوفسفات", , ", متوسط دوز کشنده", , ", رابطه کمی ساختار-فعالیت", , ", شبکه عصبی مصنوعی", , ", روش رگرسیون خطی چندگانه", , Key words: Organophosphate compounds, LD50,
ملخص المقالة :
سموم ارگانوفسفات از جمله سموم شیمیایی خطرناک برای سلامت انسان محسوب می شوند. بسیاری از محققین، با وجود رعایت اصول ایمنی و جلوگیری از مواجهه با خطرات ناشی از استفاده از ترکیبات شیمیایی، به منظور بررسی میزان سمیت ترکیبات ارگانوفسفات در تماس با این سموم قرار دارند و احتمال جذب این سموم از طریق پوست وجود دارد. مطالعه ارتباط ساختار - فعالیت با کمک رو ش ها و مدل های تئوری پیش بینی کننده، با صرف حداقل وقت و هزینه، امکان دست یابی به داده ها، اطلاعات و خواص فیزیکی- شیمیایی ترکیبات مورد نظر را فراهم می نماید. در این مطالعه، روش های رگرسیون خطی چندگانه و شبکه عصبی مصنوعی با مدل پرسپترون چند لایه با هدف بررسی ارتباط کمی شاخص سمیت LD50با برخی توصیف گرهای مولکولی، در برخی ترکیبات ارگانوفسفات به کار گرفته شد. بررسی مقادیر ضرایب همبستگی و میزان جذر خطای مجذور میانگین مدل های پیشنهادی در این مطالعه نشان داد که روش شبکه عصبی مصنوعی در پیش بینی شاخص سمیت LD50 در ترکیبات ارگانوفسفات نسبت به روش رگرسیون خطی چندگانه، از برتری بسیار بالایی برخوردار می باشد.
_||_