پیشگویی شاخص سمیت LD50 در مشتقات آنیلین)حاوی ترکیبات علفکش( با روشهای محاسباتی
الموضوعات :عصمت محمدی نسب 1 , مرتضی رضایی 2
1 - داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ اراک، ﮔﺮوه شیمی، اراک، ایران
2 - داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ اراک، ﮔﺮوه شیمی، اراک، ایران
الکلمات المفتاحية: Artificial Neural Network, Aniline derivatives, واژههای کلیدی: ", متوسط دوز کشنده", , ", روش رگرسیون خطی چندگانه ", , ", شبکه عصبی مصنوعی ", , ", مشتقات آنیلین", , Key words: LD50, Multiple Linear Regression Method,
ملخص المقالة :
در دهه های گذشته، استفاده از روش های محاسباتی با پارامترهای اعتبار سنجی دقیق برای تعیین خواص فیزیکی- شیمیایی ترکیبات، به عنوان جایگزین اقتصادی و زیست محیطی باصرفه جویی در زمان و حذف هزینه های بالا مورد توجه بسیاری از پژوهشگران قرارگرفته است. در این مطالعه، به بررسی ارتباط مقادیر لگاریتمی سمیت LD50 (log (LD50)(molkg-1))با توصیف گرهای مولکولی برای 60 نوع از مشتقات آنیلین (شامل ترکیبات علف کش) پرداخته شده است. بعد از ترسیم ساختار این ترکیبات با استفاده از نرم افزار 05 Gauss View و بهینه سازی آنها با کمک نرم افزار 09 Gaussian با روش **G++311-6/B3LYP توصیف گرهای مولکولی استخراج شدند. به کمک ژنتیک الگوریتم، توصیف گرهای نامناسب حذف شده و بهترین آن ها برای مدل های رگرسیون خطی چندگانه و شبکه عصبی مصنوعی مورداستفاده قرار گرفتند. نتایج حاصل از این مدل نشان داد که روش شبکه عصبی مصنوعی با کمترین خطا و بالاترین ضریب تعیین نسبت به روش رگرسیون خطی چندگانه برای پیش بینی لگاریتم سمیت (molkg-1)LD50 مشتقات آنیلین از برتری بالایی برخوردار است.
_||_