A Fuzzy Goal-Programming Model for Optimization of Sustainable Supply Chain by Focusing on the Environmental and Economic Costs and Revenue: A Case Study
الموضوعات :Mohammad Reza Zamanian 1 , Ehsan Sadeh 2 , Zeinolabedin Amini Sabegh 3 , Reza Ehtesham Rasi 4
1 - Department of Management, College of Human Science, Saveh Branch, Islamic Azad University, Saveh, Iran
2 - Department of Management, College of Human Science, Saveh Branch, Islamic Azad University, Saveh, Iran
3 - Department of Management, College of Human Science, Saveh Branch, Islamic Azad University, Saveh, Iran
4 - Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
الکلمات المفتاحية: Revenue, Fuzzy Goal Programming, Natural gas supply chain, Environmental cost, Economic cost,
ملخص المقالة :
Sustainable supply chain has become an integral part of the corporate strategy. In this paper, a real case study of the natural gas supply chain has been investigated. Using concepts related to natural gas industry and the relations among the compo-nents of gas and oil wells, refineries, storage tanks, dispatching, transmission and distribution network, a seven-level supply chain has been introduced and present-ed schematically. The aim of this paper is to optimize a case study using a fuzzy goal-programming multi-period model considering environmental and economic costs and revenue as fuzzy goals and maximize the total degree of satisfaction of goals as objective function. A small-sized problem was solved using GAMS 23.2.1 software and sensitivity analysis was conducted on its parameters. To the best of our knowledge, this is the first study that presents a fuzzy goal program-ming model for the optimization of sustainable natural gas supply chain by focus-ing on the environmental and economic costs and total revenue of gas products and the other main contribution of this research is focused to the developing of the mentioned model.
[1] Akoz, O., Petrovic, D., A fuzzy goal programming method with imprecise goal hierarchy, Eur. J. Oper. Res, 2007,181, P.1427–1433. Doi:10.1016/j.ejor.2005.11.049.
[2] Al-Sobhi, S.A., Elkamel, A., Simulation and optimization of natural gas processing and production network consisting of LNG, GTL, and methanol facilities, Journal of Natural Gas Science and Engineering, 2015, 23(2), P.500–508. Doi:10.1016/j.jngse.2015.02.023.
[3] Azadeh, A., Raoofi, Z., Zarrin, M., A multi-objective fuzzy linear programming model for optimization of natural gas supply chain through a greenhouse gas reduction, Journal of Natural Gas Science and Engineering, 2015, 26, P.702–710. Doi:10.1016/j.jngse.2015.05.039.
[4] Azadeh, A., Shabanpour, N., Soltanpour Gharibdousti, M., Nasirian, B., Optimization of supply chain based on macro ergonomics criteria: A case study in gas transmission unit, Journal of Loss Prevention in the Process Industries, 2016, (in press). Doi: 10.1016/j.jlp.2016.05.024.
[5] Chen, L. H., Tsai, F. C., Fuzzy goal programming with different importance and priorities, Eur. J. Oper. Res, 2001, 133, P.548–556. Doi:10.1016/S0377-2217(00)00201-0.
[6] Contesse, L., Ferrer, J.C., Maturana, S., A mixed-integer programming model for gas purchase and transportation, Ann. Operations Res, 2005,139(1), P.39–63. Doi: 10.1007/s10479-005-3443-0.
[7] Doaei, M., Davarpanah, S.H., Zamani Sabzi, M., ANN-DEA approach of corporate diversification and efficiency in bursa Malaysia, Advances in Mathematical Finance & Applications, 2017, 2(1), P.9-20. Doi:10.22034 /amfa.2017.529058.
[8] Dos Santos, S.P., Leal, J.E., Oliveira, F., The development of a natural gas transportation logistics management system, Energy Policy, 2011, 39(9), P.4774–4784. Doi:10.1016/j.enpol.2011.06.047.
[9] Dovi, M.S., Meshalkin, V.P., Mathematical Methods for the Multi-Criteria Optimization of Structure and Management of Energy Efficient Gas Supply Chains, Theoretical Foundations of Chemical Engineering, 2017, 51(6), P.1080–1091. Doi: 10.1134/S0040579517060033.
[10] Duffuaa, S.O., Al-Zayer, J.A., Al-Marhoun, M.A., Al-Saleh, M.A., A linear programming model to evaluate gas availability for vital industries in Saudi Arabia, J. Oper. Res. Soc, 1992, 43(11), P.1035–1045. Doi:10.1057/jors.1992.161.
[11] Esfandiar, M., Saremi, M., Jahangiri Nia, H., Assessment of the Efficiency of Banks Accepted in Tehran Stock Exchange Using the Data Envelopment Analysis Technique, Advances in Mathematical Finance & Applications, 2018,4(2), P.1-11. Doi: 10.22034/amfa.2018.540815.
[12] Fahimnia, B., Jabbarzadeh, A., Marrying supply chain sustainability and resilience: A match made in heaven, Transportation Research Part E, 2016, 91, P.306–324. Doi:10.1016/j.tre.2016.02.007.
[13] Ghaithan, A.M., Attia, A., Duffuaa, S.O., Multi-objective optimization model for a downstream oil and gas supply chain, Applied Mathematical Modelling, 2017, 52, P.689–708. Doi:10.1016/j.apm.2017.08.007
[14] Hamedi, M., Farahani, R.Z., Husseini, M.M., Esmaeilian, G.R., A distribution-planning model for natural gas supply chain: A case study, Energy Policy, 2009, 37(3), P.799–812. Doi:10.1016/j.enpol.2008.10.030.
[15] Iran Energy Balance, Energy Management Department, Institute for International Energy Studies (IIES), subsidiary of Ministry of Oil & Gas, 2017.
[16] Jamshidi, R., Ghomi, S.F., Karimi, B., Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method, Sci. Iran, 2012, 19(6), P.1876–1886. Doi:10.1016/ j.scient.2012.07.002.
[17] Jayaraman, R., Liuzzi, D., Colapinto, C., Malik, T., A fuzzy goal programming model to analyze energy, environmental and sustainability goals of the United Arab Emirates, Ann Oper Res, 2015, 226.
Doi:10.1007/s10479-015-1825-5.
[18] Kabirian, A., Hemmati, M.R., A strategic planning model for natural gas transmission networks, Energy policy, 2007, 35 (11), P.5656–5670. Doi:10.1016/j.enpol.2007.05.022.
[19] Kalantari, N., Mohammadi Pour, R., Seidi, M., Shiri, A., Azizkhani, M., Fuzzy goal programming model to rolling performance based budgeting by productivity approach (Case Study: Gas Refineries in Iran), Advances in Mathematical Finance & Applications, 2018, 3(3), P.95 -107. Doi:10.22034/amfa.2018.544952.
[20] Liang, T.F., Integrating production-transportation planning decision with fuzzy multiple goals in supply chains, Int. J. Prod. Res, 2007, 46, P.1477–1494. Doi: 10.1080/00207540600597211.
[21] Mahdavi, I., Mahdavi-Amiri, N., Makui, A., Mohajeri, A., Tafazzoli, R., Optimal gas distribution network using minimum spanning tree, In: Proceedings of 2010 IEEE the 17th International Conference on Industrial Engineering and Engineering Management, 2010, 2. Doi: 10.1109/ICIEEM.2010.5646007.
[22] Mahlke, D., Martin, A., Moritz, S., A simulated annealing algorithm for transient optimization in gas networks, Math. Methods Operations Res, 2007, 66(1), P.99–115. Doi:10.1007/s00186-006-0142-9.
[23] Narasimhan, R., Goal programming in a fuzzy environment, Decis. Sci, 1980, 11, P.325–336. Doi:10.1111/ j.1540-5915.1980.tb01142.x.
[24] Nikbakht, M., Zulkifli, N., Ismail, N., Sulaiman, S., Sadrnia, A., Suleiman, M., Multi-echelon Supply chain design in natural Gas industry, World Applied Sciences Journal, 2012, 20(1), P.54–63. Doi:10.5829 /idosi. wasj.2012.20.01.862.
[25] Ozceylan, E., Paksoy, T., Fuzzy multi-objective linear programming approach for optimizing a closed-loop supply chain network, Int. J. Prod. Res, 2012, 51, P.2443–2461. Doi:10.1080/00207543.2012.740579.
[26] Pishvaee, M.S., Razmi, J., Environmental supply chain network design using multi-objective fuzzy mathematical programming, Appl. Math. Model, 2011, 36(8), P.3433–3446. Doi: 10.1016/j.apm.2011.10.007.
[27] Rajeev, A., Pati, R.K., Padhi, S.S., Govindan, K., Evolution of sustainability in supply chain management: A literature review, Journal of Cleaner Production, 2017, 162, P.299–314.Doi:10.1016/j.jclepro. 2017.05.026.
[28] Rostamzadeh, R., Keshavarz Ghorabaee, M., Govindan, K., Esmaeili, A., Bodaghi Khajeh Nobar, H., Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS- CRITIC approach, Journal of Cleaner Production, 2018, 175, P.651–669. Doi:10.1016/j.jclepro.2017.12.071.
[29] Santibanez-Gonzalez, E.D.R., Mateus, G.R., Luna, H.P., Solving a public sector sustainable supply chain problem: a genetic algorithm approach, In: Proc. Of Int. Conf. of Artificial Intelligence (ICAI), Las Vegas, USA, 2011, P.507–512. citeseerx.ist.psu.edu/viewdoc/summary? Doi:10.1.1.217.6885.
[30] Sapkota, K., Oni, A.O., Kumar, A., Techno-economic and life cycle assessments of the natural gas supply chain from production sites in Canada to north and southwest Europe, Journal of Natural Gas Science & Engineering, 2018, (in press). Doi: 10.1016/j.jngse.2018.01.048.
[31] Selim, H., Araz, C., Ozkarahan, I., Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach, Transp. Res. Part E: Logist. Transp. Rev, 2008, 44, P.396–419.Doi:10.1016/ j.tre.2006.11.001.
[32] Selim, H., Ozkarahan, I., A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach, Int. J. Adv. Manuf. Technol, 2008, 36, P.401–418.Doi:10.1007/s00170-006-0842-6.
[33] Tabkhi, F., Pibouleau, L., Azzaro-Pantel, C., Domenech, S., Total cost minimization of a high-pressure natural gas network, J. Energy Resour. Technol, 2009, 131(4), 043002. Doi:10.1115/1.4000325.
[34] Tiwari, R.N., Dharmar, S., Rao, J.R., Fuzzy goal programming - an additive model, Fuzzy Sets Syst, 1987, 24, P.27–34. Doi:10.1016/0165-0114(87)90111-4.
[35] Torabi, S.A., Hassini, E., An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets Syst, 2008, 159, P.193–214. Doi:10.1016/j.fss.2007.08.010.
[36] Vance, L., Heckl, I., Bertok, B., Cabezas, H., Friedler, F., Designing sustainable energy supply chains by the P-graph method for minimal cost, environmental burden, energy resources input, Journal of Cleaner Production, 2015, 94, P.144–154. Doi:10.1016/j.jclepro.2015.02.011.
[37] Wu, Y., Lai, K.K., Liu, Y., Deterministic global optimization approach to steady state distribution gas pipeline networks, Optim. Eng, 2007, 8(3), P.259–275Doi:10.1007/s11081-007-9018-y.