Viscous Fluid Flow-Induced Nonlocal Nonlinear Vibration of Embedded DWBNNTs
الموضوعات :A Ghorbanpour Arani 1 , Z Khoddami Maraghi 2 , R Kolahchi 3 , M Mohammadimehr 4
1 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran---
Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, Iran
2 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
3 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
4 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
الکلمات المفتاحية: Pasternak foundation, DWBNNTs, Nonlinear vibration and instability, Conveying viscous fluid, Piezoelasticity theory,
ملخص المقالة :
In this article, electro-thermo nonlocal nonlinear vibration and instability of viscous-fluid-conveying double–walled boron nitride nanotubes (DWBNNTs) embedded on Pasternak foundation are investigated. The DWBNNT is simulated as a Timoshenko beam (TB) which includes rotary inertia and transverse shear deformation in the formulation. Considering electro-mechanical coupling, the nonlinear governing equations are derived using Hamilton’s principle and discretized based on the differential quadrature method (DQM). The lowest four frequencies are determined for clamped-clamped boundary condition. The effects of dimensionless small scale parameter, elastic medium coefficient, flow velocity, fluid viscosity and temperature change on the imaginary and real components of frequency are also taken into account. Results indicate that the electric potential increases with decreasing nonlocal parameter. It is also worth mentioning that decreasing nonlocal parameter and existence of Winkler and Pasternak foundation can enlarge the stability region of DWBNNT.
[1] Schwartz M., 2002, Smart Materials, John Wiley and Sons, A Wiley-Interscience Publication Inc., New York.
[2] Vang J., 2006, The Mechanics of Piezoelectric Structures, World Scientific Publishing Co., USA.
[3] Shahzad Khan M.D., Shahid Khan M., 2011, Computational study of hydrogen adsorption on potassium-decorated boron nitride nanotubes, International Nano Letters 1(8): 103-110.
[4] Yan Z., Jiang L.Y., 2011, The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects, Nanotechnology 22(24): 245703.
[5] Wang C.M., Tan V.B.C., Zhang Y.Y., 2006, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of Sound and Vibration 294(4-5): 1060-1072.
[6] Wang C.M., Zhang Y.Y., He X.Q., 2007, Vibration of nonlocal Timoshenko beams, Nanotechnology 18(10): 105401-105409.
[7] Lu P., Lee H.P., Lu C., Zhang P.Q., 2007, Application of nonlocal beam models for carbon nanotubes, International Journal of Solids and Structures 44(16): 5289-5300.
[8] Chang W.J., Lee H.L., 2009, Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model, Physics Letters A 373(10): 982-985.
[9] Ke L.L., Xiang Y., Yang J., Kitipornchai S., 2009, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory, Computational Materials Science 47(2): 409-417.
[10] Mohammadimehr M., Saidi A.R., Ghorbanpour Arani A., Arefmanesh A., Han Q., 2010, Torsional buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory, Journal of Mechanical Science and Technology 24(6): 1289-1299.
[11] Wang B., Zhao J., Zhou S., 2010, A micro scale Timoshenko beam model based on strain gradient elasticity theory, European Journal of Mechanics - A/Solids 29(4): 591-599.
[12] Jiang L.Y., Yan Z., 2010, Timoshenko beam model for static bending of nanowires with surface effects, Physica E: Low-dimensional Systems and Nanostructures 42(9): 2274-2279.
[13] Asghari M., Kahrobaiyan M.H., Ahmadian M.T., 2010, A nonlinear Timoshenko beam formulation based on the modified couple stress theory, International Journal of Engineering Science 48(12): 1749-1761.
[14] Yang Y., Zhang L., Lim C.W., 2011, Wave propagation in double-walled carbon nanotubes on a novel analytically nonlocal Timoshenko-beam model, Journal of Sound and Vibration 330(8): 1704-1717.
[15] Lei X.W., Natsuki T., Shi J.X., Ni Q.Q., 2012, Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model, Composites Part B: Engineering 43(1): 64-69.
[16] Shen Z.B., Li X.F., Sheng L.P., Tang G.J., 2012, Transverse vibration of nanotube-based micro-mass sensor via nonlocal Timoshenko beam theory, Computational Materials Science 53(1): 340-346.
[17] Yan Z., Jiang L.Y., 2011, Surface effects on the electromechanical coupling and bending behaviors of piezoelectric nanowires, Journal of Physics D: Applied Physics 44(7): 075404.
[18] Salehi-Khojin A., Jalili N., 2008, Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings, Composites Science and Technology 68(6): 1489-1501.
[19] Ghorbanpour Arani A., Amir S., Shajari A.R., Mozdianfard M.R., Khoddami Maraghi Z., Mohammadimehr M., 2011, Electro-thermal non-local vibration analysis of embedded DWBNNTs, Proceedings of the Institution of Mechanical Engineers, Part C 224(26): 745-756.
[20] Ghorbanpour Arani A., Kolahchi R., Mosallaie Barzoki A.A., 2011, Effect of material inhomogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating cylinder, Applied Mathematical Modelling 35(6): 2771-2789.
[21] Ghorbanpour Arani A., Amir S., Shajari A.R., Mozdianfard M.R., 2012, Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory, Composites Part B: Engineering 43(2): 195-203.
[22] Ghorbanpour Arani A., Shokravi M., Amir S., Mozdianfard M.R., 2012, Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs, Journal of Mechanical Science and Technology 26(5): 1455-1462.
[23] Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54(9): 4703-4710.
[24] Wang L., Ni Q., 2009, A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid, Mechanics Research Communications 36(7): 833-837.
[25] Kuang Y.D., He X.Q., Chen C.Y., Li G.Q., 2009, Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid, Computational Materials Science 45(4): 875-880.
[26] Karami G., Malekzadeh P., 2002, A new differential quadrature methodology for beam analysis and the associated differential quadrature element method, Computer Methods in Applied Mechanics and Engineering 191(32): 3509-3526.
[27] Ke L.L., Wang Y.S., 2011, Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, Physica E: Low-dimensional Systems and Nanostructures 43(5): 1031-1039.
[28] Mosallaie Barzoki A.A., Ghorbanpour Arani A., Kolahchi R., Mozdianfard M.R., 2012, Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core, Applied Mathematical Modelling 36(7): 2983-2995.
[29] Ghavanloo E., Daneshmand F., Rafiei M., 2010, Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation, Physica E: Low-dimensional Systems and Nanostructures 42(9): 2218-2224.
[30] Wang L., Ni Q., Li M., Qian Q., 2008, The thermal effect on vibration and instability of carbon nanotubes conveying fluid, Physica E: Low-dimensional Systems and Nanostructures 40: 3179-3182.
[31] Khodami Maraghi Z., Ghorbanpour Arani A., Kolahchi R., Amir S., Bagheri M.R., 2012, Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid, Composites Part B: Engineering 45 (1): 423-432.
[32] Ghorbanpour Arani A., Kolahchi R., Khoddami Maraghi Z., 2013, Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory, Applied Mathematical Modelling 37(14-15): 7685-7707.