ارائه یک مبدل تک سوئیچ DC-DC بسیار افزاینده با کلیدزنی نرم برای کاربردهای فتوولتائیک
الموضوعات :طیبه شمسی 1 , مجید دلشاد 2 , احسان ادیب 3 , محمد روح اله یزدانی 4
1 - دانشکده فنی مهندسي، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ايران
2 - دانشکده فنی مهندسي، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ايران
3 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان، اصفهان، ایران
4 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان، اصفهان، ایران
الکلمات المفتاحية: مبدلهای DC-DC, بسیار افزاینده, تک سوئیچه, کلیدزنی نرم, راندمان,
ملخص المقالة :
یک مبدل بسیار افزاینده DC-DC تک سوئیچه در این مقاله ارائه میگردد. شرایط کلیدزنی نرم در مبدل پیشنهادی برای زمان روشن شدن و خاموش شدن سوئیچ وجود دارد که باعث افزایش راندمان میشود. به منظور افزایش بهره از دو سلف کوپل شده استفاده شده است که از سلف نشتی سلف کوپل شده به منظور ایجاد شرایط کلیدزنی نرم استفاده شده است، به طوریکه که حداقل المان کمکی در مبدل پیشنهادی به کار گرفته شده است. در مبدل پیشنهادی تنها یک سوئیچ استفاده شده است که شرایط مبدل از نظر مدار کنترل هیچ تفاوتی با یک مبدل پایه ندارد. از این رو مبدل نیاز به طراحی مدار کنترل جدید ندارد. مدار کمکی اضافه شده به مبدل با حداقل المان، شرایط کلید زنی نرم را برای سوئیچ در زمان روشن شدن، تحت جریان صفر و در زمان خاموش شدن، تحت ولتاژ صفر ایجاد میکند، که علاوه بر افزایش راندمان، سادگی عملکرد و عدم افزایش هزینه را در پی دارد. بنابراین نوآوری مقاله ارایه یک مبدل بسیار افزاینده سوییچینگ نرم بدون تحمیل سوییچ اضافه و با تعداد المان پایین است. مبدل پیشنهادی پس از تحلیل تئوری کامل در توان 400 وات شبیه سازی میشود، که نتایج حاصل علاوه بر اثبات تحلیل تئوری راندمان 2/97 را نشان میدهد. همچنین نمونه آزمایشگاهی ساخته شده از مبدل و نتایج عملی بدست آمده، تحلیلهای تئوری و نتایج شبیه سازی را اثبات مینماید.
[1] N. Hou, L. Ding, P. Gunawardena, T. Wang, Y. Zhang and Y. W. Li, “A Partial Power Processing Structure Embedding Renewable Energy Source and Energy Storage Element for Islanded DC Microgrid,” IEEE Transactions on Power Electronics, vol. 38, no. 3, pp. 4027–4039, Mar 2023, doi: 10.1109/TPEL.2022.3221349.
[2] S. Hasanpour, Y. P. Siwakoti and F. Blaabjerg, “A New High Efficiency High Step-Up DC/DC Converter for Renewable Energy Applications,” IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 1489–1500, Feb 2023, doi: 10.1109/TIE.2022.3161798.
[3] Y. Guan, S. Mohamadian, X. She and C. Cecati, “Guest Editorial: Emerging Topics of DC–DC Converters for Solar PV,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 4, no. 1, pp. 14–17, Jan 2023, doi: 10.1109/JESTIE.2022.3223311.
[4] M. Uno, Y. Sasaki and Y. Fujii, “Fault Tolerant Modular Differential Power Processing Converter for Photovoltaic Systems,” IEEE Transactions on Industry Applications, vol. 59, no. 1, pp. 1139–1151, Jan 2023, doi: 10.1109/TIA.2022.3210074.
[5] M. Uno, T. Suzuki and Y. Fujii, “Module-to-Panel Modular Differential Power Processing Converter With Isolated DC Bus for Photovoltaic Systems Under Partial Shading,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 4, no. 1, pp. 97–108, Jan 2023, doi: 10.1109/JESTIE.2022.3206166.
[6] L. Xu, R. Ma, R. Xie, Sh. Zhuo, Y. Huangfu and F. Gao, “Offset-Free Model Predictive Control of Fuel Cell DC–DC Boost Converter With Low-Complexity and High-Robustness,” IEEE Transactions on Industrial Electronics, vol. 70, no. 6, pp. 5784–5796, Jun 2023, doi: 10.1109/TIE.2022.3198249.
[7] K. Zaoskoufis and E. C. Tatakis, “Isolated ZVS-ZCS DC–DC High Step-Up Converter With Low-Ripple Input Current,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 2, no. 4, pp. 464–480, Oct 2021, doi: 10.1109/JESTIE.2021.3063913.
[8] J. Lee, M. Kim, S. Kim and S. Choi, “An Isolated Single-Switch ZCS Resonant Converter With High Step-Up Ratio,” IEEE Transactions on Power Electronics, vol. 36, no. 10, pp. 11555–11564, Oct 2021, doi: 10.1109/TPEL.2021.3072647.
[9] N. Yang, J. Zeng, R. Hu and J. Liu, “Analysis and Design of an Isolated High Step-Up Converter Without Voltage-Drop,” IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 6939–6950, Jun 2022, doi: 10.1109/TPEL.2021.3138493.
[10] P. H. Feretti, F. L. Tofoli and E. R. Ribeiro, “Family of Non-Isolated High Step-Up DC–DC Converters Based on the Multi-State Switching Cell,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5882–5893, Oct 2022, doi:10.1109/JESTPE.2022.3160280.
[11] P. Talebi, M. Packnezhad and H. Farzanehfard, “Fully Soft-Switched Ultra-High Step-Up Converter With Very Low Switch Voltage Stress,” IEEE Transactions on Power Electronics, vol. 38, no. 3, pp. 3523–3530, Mar 2023, doi: 10.1109/TPEL.2022.3224831.
[12] B. X. Zhu, Y. Liu, Sh. Zhi, K. Wang and J. Liu, “A Family of Bipolar High Step-Up Zeta–Buck–Boost Converter Based on “Coat Circuit”,” IEEE Transactions on Power Electronics, vol. 38, no. 3, pp. 3328–3339, Mar 2023, doi: 10.1109/TPEL.2022.3221781.
[13] M. Farsijani, S. Abbasian, H. Hafezi and A. Abrishamifar, “A High Step-Up Cost Effective DC-to-DC Topology Based on Three-Winding Coupled-Inductor,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 4, no. 1, pp. 50–59, Jan 2023, doi: 10.1109/JESTIE.2022.3217017.
[14] T. Yao and W. Wang, “Analysis and Design of Three-End Planar Coupled Inductor Based DC–DC Converter,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 4, no. 1, pp. 28–36, Jan 2023, doi: 10.1109/JESTIE.2022.3173177.
[15] Y. Zheng, W. Xie and K. M. Smedley, “A Family of Interleaved High Step-Up Converters With Diode–Capacitor Technique,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 1560–1570, Jun 2020, doi: 10.1109/JESTPE.2019.2907691.
[16] A. Shoaei, K. Abbaszadeh and H. Allahyari, “A Single-Inductor Multi-Input Multilevel High Step-Up DC–DC Converter Based on Switched-Diode-Capacitor Cells for PV Applications,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 4, no. 1, pp. 18-27, Jan 2023, doi: 10.1109/JESTIE.2022.3173178.
[17] Y. Ye, Sh. Chen and Y. Yi, “Switched-Capacitor and Coupled-Inductor-Based High Step-Up Converter With Improved Voltage Gain,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 754–764, Feb 2021, doi: 10.1109/JESTPE.2020.2971525.
[18] I. P. Rosas, E. Agostini and C. B. Nascimento, “Single-Switch High-Step-Up DC-DC Converter Employing Coupled Inductor and Voltage Multiplier Cell,” IEEE Access, vol. 10, pp. 82626–82635, Aug 2022, doi: 10.1109/ACCESS.2022.3196563.
[19] S. Abbasian, H. S. Gohari, M. Farsijani, K. Abbaszadeh, H. Hafezi and Sh. Filizadeh, “Single-Switch Resonant Soft-Switching Ultra-High Gain DC-DC Converter With Continuous Input Current,” IEEE Access, vol. 10, pp. 33482–33491, Mar 2022, doi: 10.1109/ACCESS.2022.3161456.
[20] P. Mohseni, S. Rahimpour, M. Dezhbord, Md. R. Islam and K. M. Muttaqi, “An Optimal Structure for High Step-Up Nonisolated DC–DC Converters With Soft-Switching Capability and Zero Input Current Ripple,” IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4676–4686, May 2022, doi: 10.1109/TIE.2021.3080202.
[21] T. Nouri, M. Shaneh, M. Benbouzid and N. V. Kurdkandi, “An Interleaved ZVS High Step-Up Converter for Renewable Energy Systems Applications,” IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4786–4800, May 2022, doi: 10.1109/TIE.2021.3080211.
[22] P. Mohseni, Sh. Mohammadsalehian, Md. R. Islam, K. M. Muttaqi, D. Sutanto and P. Alavi, “Ultrahigh Voltage Gain DC–DC Boost Converter With ZVS Switching Realization and Coupled Inductor Extendable Voltage Multiplier Cell Techniques,” IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 323–335, Jan 2022, doi: 10.1109/TIE.2021.3050385.
[23] R. Rahimi, S. Habibi, M. Ferdowsi and P. Shamsi, “An Interleaved Quadratic High Step-Up DC-DC Converter With Coupled Inductor,” IEEE Open Journal of Power Electronics, vol. 2, pp. 647–658, Dec 2021, doi: 10.1109/OJPEL.2021.3133911.