دارو رسانی هدفمند در سرطان پستان موش با استفاده از نانوذرات آهن حاوی عصاره سیتوپلاسمی لاکتوباسیلوس GG در شرایط آزمایشگاهی
الموضوعات :
مجله پلاسما و نشانگرهای زیستی
سالار مکریانی
1
,
ناصر هرزندی
2
,
امیر توکمه چی
3
,
لیلا جبل عاملی
4
1 - گروه میکروبیولوژی، دانشکده علوم، دانشگاه آزاد اسلامی، واحد کرج، کرج، ایران
2 - گروه میکروبیولوژی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی، واحد کرج، کرج، ایران
3 - گروه میکروبیولوژی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، آذربایجان غربی، ایران
4 - گروه میکروبیولوژی، دانشکده علوم، دانشگاه آزاد اسلامی، واحد کرج، کرج، ایران
تاريخ الإرسال : 15 الأحد , ربيع الأول, 1442
تاريخ التأكيد : 01 الخميس , ربيع الأول, 1443
تاريخ الإصدار : 16 الخميس , صفر, 1443
الکلمات المفتاحية:
نانوذرات,
پروبیوتیک,
ضد سرطان,
دارورسانی,
ملخص المقالة :
زمینه و هدف: استفاده از داروهای شیمی درمانی در درمان سرطان دارای اثرات ناخواسته بر بافت های سالم بیمار می باشند. با این وجود پروبیوتیک ها عوامل طبیعی و ضد سرطان هستند بدون آن که دارای اثرات ناخواسته بر بدن بیمار باشند. در این تحقیق یک سیستم دارو رسانی هوشمند بر پایه نانوذرات به منظور درمان سرطان پستان موش در شرایط آزمایشگاهی مورد ارزیابی قرار گرفت.
روش کار: در ابتدا نانوذرات مغناطیسی اکسید آهن(MINPs) سنتز و با مقادیر متفاوتی از عصاره سیتوپلاسمی پروبیوتیک لاکتوباسیلوس رامنوسوسGG (L. GG) شامل 0، 312/0، 625/0، 25/1 و 5/2 میلی گرم در میلی لیتر بارگذاری شدند. سپس این ترکیب به مدت سه هفته در موش هایی که به طور تجربی در آن ها سرطان پستان القا شده بود، به کمک ایجاد یک میدان مغناطیسی تجویز گردید. در خاتمه اثر درمانی این ترکیب از طریق وسترن بلات و Quantitative Polymerase Chain Reaction مورد ارزیابی قرار گرفت.
یافته ها: نتایج نشان داد که نانوذرات مغناطیسی اکسید آهن قادرند عصاره سیتوپلاسمی پروبیوتیک را در موضع سرطانی متمرکز نمایند. هم چنین یافته ها نشان دادند که در اثر تجویز این ترکیب اندازه و حجم بافت توموری به طور معنی داری در مقایسه با موش های سرطانی درمان نشده کاهش می یابد. نانوذرات بارگذاری شده با 5/2 میلی گرم عصاره سیتوپلاسمی باکتری به طور معنی داری دارای اثر ضد توموری بالاتری بوده و از طریق آپوپتوز سبب القای مرگ سلولی می شود.
نتیجه گیری: بر اساس یافته های به دست آمده می توان نتیجه گرفت که نانوذرات اکسید آهن بارگذاری شده با عصاره سیتوپلاسمی L. GG به دلیل ایمنی، یک دست بودن و خواص مغناطیسی نامزد خوبی جهت درمان سرطان پستان موش می باشند.
المصادر:
An, BC., Hong ,S., Park, HJ., Kim, BK., Ahnm, JY., Ryu, Y. (2019). Anti-colorectal cancer effects of probiotic-derived p8 protein. Genes (Basel). https:// doi.10.3390/ genes 10080624.
2. Avtanski, D., Poretsky, L. (2018). Phyto-polyphenols as potential inhibitors of breast cancer metastasis. Mol Med., https:// doi.org/ 10.1186/ s 10020-018-0032-7.
3. Benyettou, F., Ocadiz Flores, JA., Ravaux, F., Rezgui, R., Jouiad, M., Nehme, SI. (2016). Mesoporous γ-Iron oxide nanoparticles for magnetically triggered release of doxorubicin and hyperthermia treatment. Chem Europ J. https://doi.org/10.1002/chem.201602956
4. Bressenot, A., Marcha,l S., Bezdetnaya, L., Garrier, J., Guillemin, F., Plénat, F. (2009). Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma. J Histochem Cytochem. https://doi.org/10.1369/jhc.2008.952044
5. Chen, C., Nong, Z., Xie, Q., He, J., Cai, W., Tang, X. (2017). Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione inhibits the growth and metastasis of breast carcinoma in mice. Sci Rep. , https://doi.org/10.1038/s41598-017-07162-3
6. Chen, J., Shi, M., Liu, P., Ko, A., Zhong, W., Liao, W. (2014). Reducible polyamidoamine‑magnetic iron oxide self‑assembled nanoparticles for doxorubicin Biomaterials. https:// doi.10.1016/ j.biomaterials.2013.10.057.
7. Devarajan, E., Sahin,. AA, Chen, JS., Krishnamurthy, RR., Aggarwal, N., Brun, AM. (2002). Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. https:// doi.org/10. 1038 /sj.onc.1206044.
8. Gao, Z., Li, Y., You, C., Sun, K., An, P., Sun, C. (2018). Iron oxide nanocarrier-mediated combination therapy of cisplatin and artemisinin for combating drug resistance through highly increased toxic reactive oxygen species generation. ACS Applied Bio Materials., https://doi.10.1021/acsabm.8b00056.
9. Gholami, L., Tafaghodi, M., Abbasi, B., Daroudi, M., Kazemi, O.R. (2019). Preparation of superparamagnetic iron oxide/doxorubicin loaded chitosan nanoparticles as a promising glioblastoma theranostic tool. J Cell Physiol., https://doi.10.1002/jcp.27019.
10. Górska, A., Przystupski, D., Niemczura, MJ., Kulbacka, J. (2019). Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol. http://doi:10.1007/s00284-019-01679-8.
11. Hassan, Z. (2019). Anti-cancer and Biotherapeutic Potentials of Probiotic Bacteria. J Cancer Sci., https://doi.10.4172/1948- 5956.1000575
12. Hilger, I., Kaiser ,WA. (2012). Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine., https:// doi.org/10.2217/nnm.12.112
13. Iwanowycz, S., Wang, J., Hodge, J., Wang, Y., Yu, F., Fan, D. (2016). Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. Mol Cancer Ther. https://doi.10.1158/1535-7163.MCT-15-0987
14. Jazzara, M., Ghannam, A., Soukkarieh,. C, Murad, M. (2016). Nti-proliferative activity of ƛ-carrageenan through the induction of apoptosis in human breast cancer cells. Iran J Cancer Prev., https://doi.10.17795/ijcp-3836.
15. Kim, JY., Woo, HJ., Kim, Y., Lee, HJ. (2002). Screening for antiproliferative effects of cellular components from lactic acid bacteria against human cancer cell lines. Biotechnol Letters., https://doi.org/10.1023/A:1019875204323.
16. Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, Ludwig R, Dähring H, Ettelt V, Lazaro-Carrillo A, Calero M, Sader M, Courty, J, Volkov Y, Prina-Mello A, Villanueva A, Somoza Á, Cortajarena AL, Miranda R, Hilger I (2015) Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. https://doi.10.1186/s13058-015-0576-1.
17. Lee, JE., Lee, J., Kim, JH., Cho, N., Lee, SH., Park, SB. (2019). Characterization of the anti-cancer activity of the probiotic Bacterium Lactobacillus fermentum using 2D vs. 3D culture in colorectal cancer cells. Biomolecules., https://doi.org/10.3390/biom9100557.
18. Li, Z., Yu, Y., Wang, M., Xu, H., Han, B., Jiang, P. (2019). Anti-breast cancer activity of spg-56 from sweet potato in mcf-7 bearing mice in situ through promoting apoptosis and inhibiting metastasis. Sci Rep. https:// doi.org/10. 1038/s41598-018-29099-x.
19. Lin, PW., Nasr, TR., Berardinelli, AJ., Kumar, A., Neish, AS. (2008). The probiotic Lactobacillus GG may augment intestinal host defense by regulating apoptosis and promoting cytoprotective responses in the developing murine gut. Pediatric Research. https://doi. org/10.1203/PDR. 0b013e3181827c0f.
20. Lu, X., Zhum, Y., Bai, R., Wu, Z., Qian, W., Yang, L., Cai, R. (2019). Long-term pulmonary exposure to multi-walled carbon nano-tubes promotes breast cancer metastatic cascades. Nat Nanotechnol.,https://doi.org/10.1038/s41565-019- 0472-4.
21. Ma, EL., Choi, YJ., Choi, J., Pothoulakis, C., Rhee, SH., Im, E. (2010). The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer., https:// doi.10.1002/ijc.25011
22. National Research Council (NRC) 8th ed. Washington, USA: National Academies Press; 2011. Committee for the update of the guide for care and use of laboratory animals; pp. 11-41.
23. Ndong, C., Tate, JA., Kett, WC., Batra, J., Demidenko, E., Lewis, LD. (2015). Tumor cell targeting by iron oxide nanoparticles is dominated by different factors in vitro versus in vivo. Plo one. https://doi. org/10.1371/ journal.pone.0115636.
24. Nigjeh, SE., Yeap, SK., Nordin, N., Rahman, H., Rosli, R. (2019). In vivo anti-tumor effects of citral on 4t1 breast cancer cells via induction of apoptosis and downregulation of aldehyde dehydrogenase activity. Molecules. https://doi. org/10.3390/molecules24183241.
25. Nowak, A., Paliwoda, A., Błasiak, J. (2019). Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit Rev Food Sci Nutr., https://doi. 10.1080/ 10408398.2018.1494539.
26. Orlando, A., Messa, C., Linsalata, M., Cavallini, A., Russo, F. (2009). Effects of GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. Immunopharmacol Immunotoxicol. https://doi.10. 1080/ 08923970802443631.
27. Orlando, A., Refolo, MG., Messa, C., Amati, L., Lavermicocca, P., Guerra, V. (2012). Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr Cancer,https://doi.org/10.1080/01635581.2012.717676.
28. Orlando, A., Linsalata, M., Russo, F. (2016). Antiproliferative effects on colon adenocarcinoma cells induced by co-administration of vitamin K1 and Lactobacillus rhamnosus Int J Oncol., https:// doi.10.3892/ ijo.2016.3463.
29. Pepper, SJ., Britz, ML. An. (2019). Acid up-regulated surface protein of Lactobacillus paracasei strain GCRL 46 is phylogenetically related to the secreted glucan- (GpbB) and immunoglobulin-binding (SibA) protein of pathogenic streptococci. Int J Mol Sci., https://doi.org/10.3390/ijms20071610
30. Piehler, S., Dähring, H., Grandke, J., Göring, J., Couleaud, P., Aires, A. (2020). Iron oxide nanoparticles as carriers for dox and magnetic hyperthermia after intratumoral application into breast cancer in mice: impact and future perspectives. Nanomaterials (Basel). https://doi. 10.3390/ nano10061016.
31. Sharifi, M., Hasan, A., Nanakali, NMQ., Salihi, A., Qadir, FA., Muhammad, HA. (2020) Combined chemo-magnetic field-photothermal breast cancer therapy based on porous magnetite nanospheres. Sci Rep., https://doi. org/10.1038/ s41598-020-62429-6.
32. Sharma Singh, RL., Kakkar, P. (2011). Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem Toxicol. https:// doi.org/ 10.1016/j. fct.2010. 11.041.
33. Wang, Y., Wu, Y., Wang, Y., Xu, H., Mei, X., Yu, D. (2017). Antioxidant properties of probiotic bacteria. Nutrients., https:// doi.org/ 10.3390/ nu9050521.
34. Wu, H., Inoue, M. (2006). Immuno histochemical analysis for Mdm2 and p53 proteins in methylcholanthrene-induced mouse rhabdomyosarcomas. J Vet Med Sci., https:// doi.org/ 10.1292/jvms.68.427.
35. Wu, M., Huang, S. (2017). Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mo. Cli. Oncol., https:// doi. 10.3892/ mco.2017.1399.
Xuan, S., Wang, F., Lai, FMY., Sham, KWY., Wang, XJ., Lee, S. (2011). Synthesis of biocompatible, mesoporous Fe3O4 nano/ microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl Mater Int., https:// doi.10.1021/ am1012358.
Zhou, Y., Tian, L., Zhang, YC., Guo, BF., Zhou, QW. (2014). Apoptotic effects of psiRNA-STAT3 on 4T1 breast cancer cells in vitro. Asian Pac J Cancer Prev., https:// doi.org/ 10.7314/ APJCP. 2014.15.16.6977..
_||_