بررسی تاثیر کوئرستین بر تکثیر و تمایز سلولهای بنیادی پیش ساز عصبی ناحیه زیر بطنی (svz) مغز رتهای بالغ DOR: 20.1001.1.17359880.1399.14.1.3.6
الموضوعات : مجله پلاسما و نشانگرهای زیستیعلی ابراهیمی 1 , کاظم پریور 2 , نسیم حیاتی رودباری 3 , اکرم عیدی 4
1 - گروه زیست شناسی جانوری، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه زیست شناسی جانوری، دانشکده علوم پایه، واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی،تهران، ایران.
3 - گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
4 - گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
الکلمات المفتاحية: کوئرستین, تکثیر, تمایز, ناحیه زیربطنی( SVZ),
ملخص المقالة :
وجود سلولهای بنیادی پیش ساز عصبی در بخش هایی از مغز بالغین، امید به درمان و بازیابی نقص ها و بیماری های مرتبط با سیستم عصبی مرکزی و دژنراتیو مانند پارکینسون، آلزایمر و ام اس را بالا برده است. از طرفی کمک به تسریع تکثیر و تمایز این سلولها با دیدگاه درمانی بحث پیشرو دیگری است که این امیدها رابیشترمی کند. کوئرستین یک فلاونوئید گیاهی است که اثرات متعدد ترمیمی، مهاری و حفاظتی آن بر روی برخی از بیماری ها از جمله آسیب های عصبی، جبران استرس های اکسیداتیو، مهار سرطان و نیز روند های زیستی سلول از قبیل تمایز و تکثیر، بررسی و اثبات شده است. هدف از این تحقیق، بررسی تاثیر توام این ماده بر روند تکثیر و تمایز سلولهای زیر بطنی( SVZ) مغز موشهای بالغ در وضعیت وابسته به دوز می باشدبا استخراج سلولهای بنیادی عصبی از SVZ و تولید نوروسفیر، غلظتهای 1، 5 و 15 میکرومولارکوئرستین به محیطهای کشت افزوده شد. پس ازیک هفته تاثیر تکثیری و تمایزی آن با کنترل مقایسه گردید. بعد از تعیین هویت سلولی از طریق بیان ژن و وضعیت بقاء سلولی با آزمون MTT، شمارش و کمّی سازی تصاویر سلولی بوسیله نرم افزار ImageJ، معنی داری اختلافات از طریق نرم افزار SPSS بررسی گردید.نتایج نشان داد که میزان تاثیر تمایزی در غلظت های مختلف متفاوت است. بطوریکه غلظت 1میکرومولار کمترین تاثیر تمایزی را دارد. از غلظت 5 میکرومولار و بالاتر، تاثیر تمایزی افزایش یافته ولی مهار تکثیر نیز اتفاق می افتد. در غلظت 15 میکرومولار بیشترین مهار مشاهده گردید.
1.Ademosun, A.O., Oboh, G., Bello, F., Ayeni, P.O. (2015). Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and but yryl cholinesterase activities, J. Evid. Based Complementary Altern. Med. 4 (2015), doi:http://dx.doi.org/10. 1177/2156587215610032.
2.Allison, M., Bond, M., Hongjun, S. (2015). Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell, 17(4); 385–395.
3.Alrawaiq, N.S., Abdullah, A. (2014). A review of flavonoid quercetin: metabolism:bioactivity and antioxidant properties. Int.J. PharmTech Res, 6; 933–941.
4.Ambron, RT., Walters, ET. (1996). Priming events and retrograde injurysignals. A new perspective on the cellular and molecular biology of nerve regeneration, [J]. Mol Neurobiol, 13(2); 61-79.
5.Boots, AW., Haenen, GR., Bast, A. (2008). Health effects of quercetin: from antioxidant to nutraceutical. [J]. Eur J Pharmacol, 585(2-3); 325-337.
6.Bischoff, SC. (2008). Quercetin: potentials in the prevention and therapy of disease. [J]. Curr Opin Clin Nutr Metab Care, 11(6); 733-740.
7.Chen, M., Yin. Z., Zhang, L., Liao, H.(2015). Quercetin promotes neurite growth through enhancing intracellular cAMP level and GAP-43 expression. Chinese Journal of Natural Medicines, 13(9); 0667-0672 .
8.Chen, ZL., Yu, WM., Sidney, S. (2007). Peripheral regeneration. [J]. Annu Rev Neurosci, 30; 209-233.
9.Cho, JY., Kim, IS., Jang, YH. (2006). Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. [J]. Neurosci Lett, 404(3); 330-335.
10.Dajas, F., Rivera-Megret, F., Blasina, F. (2003). Neuroprotection by flavonoids, [J]. Braz J Med Biol Res, 36(12); 1613-1620.
11.Golmohammadi, MG., Sagha, M., Azari, H., Najafzadeh, N. (2011). Isolation of neural stem and progenitor cells from the adult mouse brainusing the neurosphere assay. Journal of Ardabil Univ Med Sci, 11(3); 246-258.
12.Guillermo Gormaz J., S. Quintremil, R. (2015). Cardiovascular disease a target for the pharmacological effects of quercetin. Curr. Topics Med. Chem.,15;1735–1742.
13.Ilary, A., Esther, U., Xavier, N. (2012). Specificity of peripheral nerve regeneration: Interactions at the axon level. [J]. Prog Neurobiol. (2); 98- 106.
14.Johari, J., Kianmehr, A., Mustafa, M.R., Abubakar, S., Zandi, K. (2012). Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int. J. Mol. Sci.,13; 16785–16795.
15.Nakajima, K.I., Niisato, N., Marunaka, Y. (2011). Quercetin stimulates NGF-induced neurite outgrowth in PC12 cells via activation of Na+/K+/2Cl-cotransporter. Cell. Physiol. Biochem., 28;147–156.
16.Namiko, A., Valeria, C. (2008).Nerve injury signaling. [J]. Curr Opin Neurobiol, 18(30);276-283.
17.Natarajan, S., Pandima, D. K., Nabavi, Se. F. (2011). Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Journal of Ardabil Univ Med. Sci, 11(3); 246-258.
18.Ohnishi, H., Sato, M., Ohnishi-Kameyama, M., Matsunaga, I., Naito, S. (2015). Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients, 7; 2345–2358.
19.Palazzolo, G., Horvath, P., Zenobi-Wong, M. (2012). The flavonoid isoquercitrin promotes neurite elongation by reducing RhoA activity. PLoS One, 7;e49979.
20.Robaszkiewicz, A., Balcerczyk, A., Bartosz, G. (2007). Antioxidative and prooxidative effects of quercetin on A549 cells. Cell. Biol. Int., 31; 1245–1250.
21.Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., Russo, G.L. (2012). The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol, 83; 6–15.
22.Schültke, E., Kamencic, H., Zhao, M. (2005). Neuroprotection following fluid percussion brain trauma: a pilot study using quercetin. [J]. J Neurotrauma, 22(12); 1475-1484.
23.Sharma, V., Mishra, M., Ghosh, S., Tewari, R., Basu, A., Seth, P. (2007). Modulation of interleukin-1b mediated inflammatory response in human astrocytes by flavonoids: implications in neuroprotection. Brain Res. Bull, 73; 55–63.
24.Shu-Ting, Ch. (2014). Oral and intraperitoneal administration of quercetin decreased lymphocyte DNA damage and plasma lipid peroxidation induced by TSA in vivo. BioMed Research International, 1155(10); 2133-2143.
25.Sun ,G.Y., Chen, Z., Jasmer, K.J., Chuang, D.Y., Gu, Z., Hannink, M. (2015). Quercetin attenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the nrf2 pathway and induction of heme oxygenase-1. PLoS One, 10;e0141509.
26.Taupin, P. (2011). Neurogenesis, NSCs, pathogenesis and therapies for lzheimer's disease. Front Biosci., (Schol Ed) 3; 178-190.
27.Testa, G., Gamba, P., Badilli, U., Gargiulo, S., Maina, M., Guina, T. (2014). Loading into nanoparticles improves quercetin's efficacy in preventing neuroinflammation induced by oxysterols. PLoS. One., 9;e96795.
28.Yue, L., Zhen-Gang, T., Yi, L., Xin-Guo, Qu., Wei, L., Guo-Bin, Wang, C. (2017). Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomedicine & Pharmacotherapy, 92;33–38.
29.Zhang, M., Swarts, S.G., Yin, L., Liu, C., Tian, Y., Cao, Y. (2011). Antioxidant properties of quercetin oxygen transport to tissue XXXII. Springer, 283–289
_||_