مقایسه میزان بیان ژن رشد (IGF-I) در سایزهای مختلف ماهیان بومی و غیر بومی قزلآلای رنگین کمان (Oncorhynchus mykiss)
الموضوعات : مجله پلاسما و نشانگرهای زیستیمحمدرضا قمی 1 , مریم حقی 2 , محمود محسنی 3 , مسعود قانع 4
1 - دانشیار گروه شیلات، دانشگاه آزاداسلامی واحد تنکابن، ایران
2 - دانشجوی دکتری تکثیر و پرورش آبزیان، دانشگاه آزاد اسلامی واحد تنکابن، ایران.
3 - مؤسسه تحقیقات بین المللی تاسماهیان دریای خزر، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران.
4 - دانشیار گروه میکروبیولوژی، دانشگاه آزاداسلامی واحد تنکابن، ایران.
الکلمات المفتاحية: سایز بدن, ژن رشد (IGF-I), تنوع ژنتیکی, قزل آلای رنگین کمان,
ملخص المقالة :
ز زمینه و هدف: رشد ماهی ها از طریق بسیاری از عوامل محیطی و فیزیولوژیکی تنظیم می شود و با پیشینه ژنتیکی هر موجود شکل می گیرد. فاکتور رشد شبه انسولین-یک IGF-I، نقش مهمی در فرآیندهای مختلف زیستی ماهیان بر عهده دارد. هدف از انجام این پژوهش، بررسی میزان بیان ژن رشد IGF-I mRNA در مراحل مختلف رشد ماهیان قزل آلای رنگین کمان بومی و غیر بومی(وارداتی) کشور است. روش کار: به همین منظور ماهیان قزل آلای بومی و غیر بومی در سه سایز کوچک، متوسط و بزرگ با میانگین کل(cm 78/6±25/32- g 34/244±66/453) از مرکز پرورش ماهی در استان گیلان(رشت) تهیه شد. ابتدا در شرایط استریل و بعد از بیهوشی ماهیان حدود 20 میلی گرم از بافت کبد، از هر دو نژاد بومی و غیر بومی نمونه تهیه شد. استخراج RNA و سنتز cDNA براساس روش استاندارد RT-PCR در آزمایشگاه تحقیقات ژنتیک دانشگاه آزاد تنکابن انجام شد. یافته ها: نتایج نشان داد که میزان بیان ژن IGF-I در بین نژاد بومی و غیر بومی تفاوت معنی داری دارد به طوری که بیشترین و کمترین میزان ژن به ترتیب در سایز کوچک نژاد غیر بومی و سایز متوسط نژاد بومی بود(P<0.05). اما در بررسی رابطه وزن و طول با مقدار بیان ژن رابطه معنی داری دیده نشد(P˃0.05). این در حالی است که با افزایش اندازه ماهی میزان بیان IGF-I روند کاهشی نشان داد. نتیجه گیری: این یافته ها نشان می دهد که ژنIGF-I در مراحل رشد و تکامل ماهیان قزل آلای رنگین کمان می تواند نقش اساسی داشته باشد.
-اکبرزاده، آ.، حق بین، ک.، نعمت اللهی، م.، محجوبی، ف.، فرحمند، ح.، کلنگی میاندره، ح. 1391. انتخاب مناسب ترین ژن های رفرنس جهت مطالعات PCR time-Real در مراحل ابتدایی زیست تاسماهی ایرانی، persicus. Acipense مجله بوم شناسی آبزیان، دوره 2، شماره 3، ص 1-13.
2-ایرجی، س.، مناف فر، ر.، اسماعیلی فریدونی، ا.، زارع، ص. 1394. تفکیک دو سویه ی تجاری ماهی قزل آلای ایرانی و فرانسوی با استفاده از تکنیک PCR-RFLP. مجله دامپزشکی ایران، دوره یازدهم، شماره 4، ص 6-9.
3-پیکان حیرتی، ف.، مجازی امیری، ب.، فرحمند، ح. 1388. توالی یابی فاکتور رشد شبه انسولبن-یک IGF-I در فیل ماهی Huso huso و بررسی بیان آن در بافت های مختلف. مجله زنتیک نوین، شماره 3، ص 17-25.
4-زاهدی، س.، اکبرزاده، آ.، مهرزاد، ج.، نوری؛ ا.، هرسیج، م. 1398. مقایسه پارامترهای رشد، هرمون کورتیزول و بیان ژن های مرتبط با استرس و رشد ماهی قزل آلای رنگان کمان (Oncorhynchus mykiss) در دو سیستم باز و بازگردشی. مجله پژوهش های ماهی شناسی کاربردی، شماره 3، ص 109-124.
5-عبدالله نژاد، ز. 1391. بررسی بیان ژن هورمون رشد طی مراحل تکاملی در تاسماهی سیبری (Acipenser baerii). دانشکده منابع طبیعی. دانشگاه گیلان، کلونینگ ژن هورمون رشد(GH) ماهی (Huso huso) در سازه های لنتی ویروسی و غیر ویروسی و بررسی بیان ژن در سلول های بنیادی جنینی انسانی، دوره 13، شماره1، صفحات 10-1.
6-یوسفیان، م.، بینایی، م.، قره ویسی ش.، بحرکاظمی م.،1391. مقایسه فاکتورهای بیوشیمیایی پیش مولد ماهی قزل آلای رنگین کمان، Oncorhynchus mykiss قزل آلای رنگین کمان ایرانی و فرانسوی. مجله شیلات دانشگاه آزاد اسلامی واحد آزادشهر، سال ششم، شماره 4، صفحات 14-9.
7.Akbarzadeh, A., Farahmand, H., Mahjoubi, F., Nematollahi, M. A., Leskinen, P., Rytkonen, K. (2011). The transcription of L-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbic acid, during development of Persian sturgeon Acipenser persicus. Comparative. Biochemistry and Physiology, 158; 282-288.
8.Beckman, B. R., Larsen, D. A., Moriyama, S., Lee-Pawlak, B., DickhoV, W. W. (1998). Insulin-like growth factor-I and environmental modulation of growth during smoltification of spring chinook salmon (Oncorhynchus tshawystscha). Gen. Comp. Endocrinol. 109;325–335.
9.Carrera, E.; Garcia, T.; Cespedes, A.; Gonzalez, I.; Sanz, B.; Hernandez, P.E., Martin, R. (1999). Identification of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) using PCR amplification and restriction analysis of the mitochondrial cytochrome b gene. Journal of Food Protection, 61; 482-486.
10.Castillo, J., Codina, M., Martinez, M.L., Navarro, I., Gutierrez, J. (2004). Meatbolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, (286); 935-941.
11.De Santis, C., Smith Keune, C., Jerry, D.R. (2010). Normalizing RT-qPCR Data: Are we getting the right answers? An appraisal of normalization approaches and internal reference genes from a case study in the finfish lates calcarifer. Marine Biotechnology, 13(2); 170-180.
12.Din, S.Y., Hurvitz, A., Goldberg, D., Jackson, K., Levavi- Sivan, B., and Degani, G. (2008). Cloning of Russian sturgeon, (Acipenser gueldenstaedtii) growth hormone and insulin like growth factor I and their expression in male and female fish during the first period of growth. Journal of endocrinology investment, (31); 201-210.
13.Duan, C. (1998). Nutritional and developmental regulation of insulin- like growth factors in fish. Journal of Nutrition, 128(2); 306–314.
14.Duan, C. (1997). The insulin-like growth factor system and its biological actions in fish. American Zoologist., 37(6); 491-503.
15.Dunham, R. A. (2004). Aquaculture and fisheries biotechnology: genetic approaches, department of fisheries and allied aquacultures auburn, university alabama USA, CABI Publishing, P 7-13, 160-192, 207-211.
16.Gjedrem, T. (2000). Genetic improvement of coldwater fish species. Aquaculture Research, (3); 25–33.
17.Gorjipoor, E., Kamaei, K., Bashti, T., Zargham, D., Razmi, K., Gandomkar, H.A. (2009). Comparison of growth and survival rate between import andnative rainbow trout (Oncorhynchus mykiss). Iranian Fisheries Science Research Institute, 40;. 88.1252.
18.IFSA. Iran fisheries organization, Deputy of planning and development manager, Office of Budget and Planning, 2015. P 33.
19.Kocmarek, A.L., Ferguson, M., Danzmann, R.G. (2104). Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups. BMC Genomics, (15); P 9.
20.Liang, Y.H., Cheng, C.H., Chan, K.M. (1996). Insulin-like growth factor-I Ea2 is the
predominantly expressed form of IGF in common carp, (Cyprinus carpio). Molecular Marine Biology and Biotechnology, 5; 145-152
21.Livak, K.J. Schmittgen, T.D. (2001). Analysis of relative gene expression data using
real-time quantitative PCR and the 2-ΔΔC T method. Methods, (25);402–408.
22.Mommsen, T.P. (1998). Growth and metabolism. In: The physiology of fishes, Edited by D. H. Evans, 2nd ed., CRC press; 65-97.
23.Nazari, R.M., Modanloo, M., Ghomi, M.R., Ovissipor, M.R. (2010). Application of synthetic hormone LHRH-A2 on the artificial propagation of Persian sturgeon Acipenser persicus. Aquaculture International, 18; 837–841.
24.Nordgarden, U., Fjelldal, P.G., Hansen, T., Björnsson, B.T., Wargelius, A. (2006). Growth hormone and insulin-like growth factor-I act together and independently when regulating growth in vertebral and muscle tissue of Atlantic salmon postsmolts. Genearal and Comparative Endocrinology, (149); 253–260.
25.Radonic, A., Thuike, S., Mackay, I.M., Landt, O., Siegert, W. Nitsche, A. (2004). Guideline to reference gen selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, (313);856- 862.
26.Reinecke, M., Schmid, A., Ermatinger, R., Loffing-Cueni, D. (1997). Insulin-like growth factor I in the teleost Oreochromis mossambicus, the tilapia: Gene sequence, tissues expression, and cellular localization. Endocrinology, (138); 3613-3619.
27.Riley, L.G., Hirano, T., Grau, E.G. (2002). Rat ghrelin stimulates growth hormone and prolactin release in the tilapia, Oreochromis mossambicus. – Zool. Sci. (19); 797-800.
28.Sajedi, R.H., Aminzadeh, S., Naderi, H., Abdolahi, H. (2003). Genetic variation within and among rainbow trout, Oncorhynchus mykiss, hatchery populations from Iran assessed by PCR-RFLP analysis of mitochondrial DNA segments. Food Science, (68); 870-873.
29.Shamblott, M.J., Chen, T.T. (1992). Identification second insulin-like growth factor in a fish species. Proceeding of Natural Academic Science. USA, (89);8913-8917.
30.Vong, Q. P., Chan, K. M., Cheng, C. H. K. (2003). Quantification of common carp (Cyprinus carpio) IGF-I and IGF-II mRNA by real-time PCR: differential regulation of expression by GH. Journal of Endocrinology, (178): 513–521.
31.Wenne, R., Boudry, P., Hemmer-Hansen, J., Kause.A. (2007). What role for genomics in fisheries management and aquaculture, Aquat. Living Resour, 20(3); 241–255.
32.Wood W. A., Duan, C., Bern, H. A. (2005). Insulin-like growth factor signaling in fish. International review of cytology, 243; 215-285.
33.Wuertz, S., Gessner, J., Kirschbaum, F., Kloas, W. (2007). Expression of IGF-I and IGF-I receptor in male and female sterlet, Acipenser ruthenus; Evidence for an important role in gonad maturation. Comparative biochemistry and physiology, (147); 223-230.
34.Yakar, S., Pennisi, P., Kim, C.H., Zhao, H., Toyoshima, Y., Gavrilova, O. (2005). Studies involving the GH-IGF axis: lessons from IGF-I and IGF-I receptor gene targeting mouse models. Journal of Endocrinological Investigation, 28 (5); 19-22.
35.Yarmohammadi, M., Shabani, A., Pourkazemi, M., Soltanloo, H., Imanpour, M,R., Ramezanpour, S. (2012). Effects of starvation and re-feeding on compensatory growth performance, plasma metabolites and IGF-I gene expression of Persian sturgeon (Acipenser persicus, Borodin 1897). Iranian journal of fisheries Sciences, 12(2); 465-483..
_||_