مروری بر انواع مدالیته های تصویربرداری فوتواکوستیک در کاربردهای پزشکی
الموضوعات : سامانههای پردازشی و ارتباطی چندرسانهای هوشمند
1 - استادیار، گروه مهندسی برق، دانشکده برق و کامپیوتر، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
الکلمات المفتاحية: میکروسکوپی فوتواکوستیک, توموگرافی کامپیوتری فوتواکوستیک, آندوسکوپی فوتواکوستیک, رزولوشن, کنتراست,
ملخص المقالة :
مدالیته های تصویربرداری پزشکی نقش مهمی را در تشخیص، مرحله بندی، درمان و پایش روند درمان بیماری ها ایفا می کنند. یکی از روش هایی که در سال های اخیر وارد عرصۀ تحقیقات پزشکی شده است، تصویربرداری فوتواکوستیک است که به علّت خواصی چون غیرتهاجمی بودن، امنیت بیشتر به دلیل استفاده از تشعشعات غیریونیزان و سهولت کاربرد، در بسیاری از حوزههای پزشکی مورد توجه قرار گرفته است. این تکنیک تصویربرداری ترکیبی از دو تکنولوژی فراصوت و نوری بوده و در نتیجه مهم ترین مزیت و علّت توجه به آن بهره بردن از کنتراست بالای تصویربرداری نوری و رزولوشن بالای تصویربرداری فراصوت می باشد. در این مقاله به بررسی اصول اساسی تصویربرداری فوتواکوستیک و انواع مدالیته های رایج آن در کاربردهای پزشکی شامل میکروسکوپی فوتواکوستیک، توموگرافی کامپیوتری فوتواکوستیک و آندوسکوپی فوتواکوستیک و همچنین چالش های موجود در این حوزه پرداخته ایم. مطالعات انجام شده قابلیت به کارگیری تکنیک فوتواکوستیک را در فراهم آوردن اطلاعات مولکولی، ساختاری و عملکردی از بافت های بیولوژیکی نشان می دهد.
[1] M. Hariri and H. Najafy, “Improve the quality of mammogram images by image processing techniques,” Intelligent Multimedia Processing and Communication Systems, vol. 3, issue. 1, pp. 57-69, 2022.
[2] Y. Su, F. Zhang,K. Xu,J. Yao and RK. Wang, “A photoacoustic tomography system for imaging of biological tissues,” Journal of Physics D: Applied Physics, vol. 38, no. 15, pp. 2640, 2005.
[3] LV. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 1, pp. 171-179, 2008.
[4] LV. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Disease Markers, vol. 19, no. 2, 3, pp. 123-138, 2004.
[5] M. Xu and LV. Wang, “Photoacoustic imaging in biomedicine,” Review of Scientific Instruments, vol. 77, no. 4, pp.41101, 2006.
[6] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, vol. 1, no. 4, pp. 602-631, 2011.
[7] J. Xia, J. Yao and LV. Wang, “Photoacoustic tomography: principles and advances,” Electromagnetic Waves (Cambridge, Mass.), vol. 147, pp. 1, 2014.
[8] AG. Bell, “ART. XXXIV.--On the production and reproduction of sound by light,” American Journal of Science, vol. 20, no. 118, pp. 305, 1880.
[9] AR. Mohammadi-Nejad, M. Mahmoudzadeh, MS. Hassanpour, F. Wallois, O. Muzik, C. Papadelis, A. Hansen, H. Soltanian-Zadeh, J. Gelovani and M. Nasiriavanaki, “Neonatal brain resting-state functional connectivity imaging modalities,” Photoacoustics, vol. 10, pp.1-19, 2018.
[10] J. Benavides-Lara, R. Manwar, LS. McGuire, MT. Islam, A. Shoo, FT. Charbel, MG. Menchaca, AP. Siegel, DA. Pillers, JG. Gelovani and K. Avanaki, “Transfontanelle photoacoustic imaging of intraventricular brain hemorrhages in live sheep,” Photoacoustics, vol. 33, pp. 100549, 2023.
[11] A. Neprokin, C. Broadway, T. Myllylä, A. Bykov and I. Meglinski, “Photoacoustic imaging in biomedicine and life sciences,” Life, vol. 12, no. 4, pp. 588, 2022.
[12] C. Liu and L. Wang, “Functional photoacoustic microscopy of hemodynamics: a review,” Biomedical Engineering Letters, vol. 12, no. 2, pp. 97-124, 2022.
[13] J. Yao and LV. Wang, “Photoacoustic tomography: fundamentals, advances and prospects,” Contrast Media & Molecular Imaging, vol. 6, no. 5, pp. 332-345, 2011.
[14] LV. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science, vol. 335, no. 6075, pp. 1458-1462, 2012.
[15] LV. Wang and HI. Wu, Biomedical optics: principles and imaging, John Wiley & Sons, 2012.
[16] S. Hu, K. Maslov, V. Tsytsarev and LV. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” Journal of Biomedical Optics, vol. 14, no. 4, pp. 040503, 2009.
[17] HF. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica and LV. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Applied Physics Letters, vol. 90, no. 5, 2007.
[18] J. Ahn, JY. Kim, W. Choi and C. Kim, “High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers,” Photoacoustics, vol. 23, pp. 100282, 2021.
[19] C. Bench, A. Hauptmann and B. Cox, “Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions,” Journal of Biomedical Optics, vol. 25, no. 8, pp. 085003, 2020.
[20] X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica and LV. Wang, “ Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nature Biotechnology, vol. 21, no. 7, pp. 803-806, 2003.
[21] C. Liu and L. Wang, “Functional photoacoustic microscopy of hemodynamics: a review,” Biomedical Engineering Letters, vol. 12, no. 2, pp. 97-124, 2022.
[22] RG. Kolkman, W. Steenbergen and TG. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers in Medical Science, vol.21, pp. 134-139, 2006.
[23] J. Yao and LV. Wang, “Photoacoustic microscopy,” Laser & Photonics Reviews, vol. 7, no. 5, pp. 758-778, 2013.
[24] C. Li and LV. Wang, “Photoacoustic tomography and sensing in biomedicine,” Physics in Medicine & Biology, vol. 54, no. 19, pp. R59, 2009.
[25] W. Liu and J. Yao, “Photoacoustic microscopy: principles and biomedical applications,” Biomedical Engineering Letters, vol. 8, pp. 203-213, 2018.
[26] S. Jeon, J. Kim, D. Lee, JW. Baik and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics, vol. 15, pp. 100141, 2019.
[27] HF. Zhang, K. Maslov and LV. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” Journal of Biomedical Optics, vol. 14, no. 2, pp. 024050, 2009.
[28] E. De Montigny, “Photoacoustic tomography: principles and applications,” Department of Physics Engineering, polytechnic school Montreal, 2011.
[29] C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu and LV. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” Journal of Biomedical Optics, vol. 15, no. 1, pp. 010509, 2010.
[30] HP. Brecht, R. Su, M. Fronheiser, SA. Ermilov, A. Conjusteau and AA. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” Journal of Biomedical Optics, vol. 14, no. 6, pp. 064007, 2009.
[31] J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, LV. Wang and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” Journal of Biomedical Optics, vol. 13, no. 2, pp. 024007, 2008.
[32] RA. Kruger, RB. Lam, DR. Reinecke, SP. Del Rio and RP. Doyle, “Photoacoustic angiography of the breast,” Medical Physics, vol. 37, no. 11, pp. 6096-6100, 2010.
[33] L. Song, K. Maslov, KK. Shung and LV. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” Journal of Biomedical Optics, vol. 15, no. 2, pp. 02133, 2010.
[34] O. Balogun, B. Regez, HF. Zhang, S. Krishnaswamy, “Real-time full-field photoacoustic imaging using an ultrasonic camera,” Journal of Biomedical Optics, vol. 15, no. 2, pp. 021318, 2010.
[35] JM. Yang, K. Maslov, HC. Yang, Q. Zhou, KK. Shung and LV. Wang, “Photoacoustic endoscopy,” Optics Letters, vol. 34, no. 10, pp. 1591-1593, 2009.
[36] JM. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, KK. Shung and LV. Wang, “Toward dual-wavelength functional photoacoustic endoscopy: laser and peripheral optical systems development,” InPhotons Plus Ultrasound: Imaging and Sensing, vol. 8223, pp. 242-248, 2012.
[37] S. Hu and LV. Wang, “Photoacoustic imaging and characterization of the microvasculature,” Journal of Biomedical Optics, vol. 15, no. 1, pp. 011101, 2010.
[38] C. Zhang, K. Maslov and LV. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Optics Letters, vol. 35, no. 19, pp. 3195-3197, 2010.
[39] S. Hu, K. Maslov and LV. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Optics Letters, vol. 36, no. 7, pp. 1134-1136, 2011.
[40] CP. Favazza, O. Jassim, LA. Cornelius and LV. Wang, “In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus,” Journal of Biomedical Optics, vol. 16, no. 1, pp. 016015, 2011.
[41] DK. Yao, K. Maslov, KK. Shung, Q. Zhou and Wang LV, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Optics Letters, vol. 35, no. 24, pp. 4139-4141, 2010.
[42] M. Afsardeir and M. Afsardeir, “A new algorithm for data clustering using combination of genetic and fireflies algorithms,” Intelligent Multimedia Processing and Communication Systems, vol. 2, issue. 4, pp. 35-43, 2022.
[43] J. Yao, KI. Maslov, Y. Zhang, Y. Xia and LV. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” Journal of Biomedical Optics, vol. 16, no. 7, pp. 076003, 2011.
[44] Z. Xu, Q. Zhu and LV. Wang, “In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury,” Journal of Biomedical Optics, vol. 16, no. 6, pp. 066020, 2011.
[45] JT. Oh, ML. Li, HF. Zhang, K. Maslov, G. Stoica and LV. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” Journal of Biomedical Optics, vol. 11, no. 3, pp. 034032, 2006.