ارائه یک الگوریتم برای گروه بندی انواع محصولات بیمه و کاربران در سیستم توصیه گر بیمه با خوشه بندی مبتنی بر فیلتر مشارکتی ارزیابی عملکرد آن براساس توصیه بیمه
الموضوعات : سامانههای پردازشی و ارتباطی چندرسانهای هوشمندمرضیه امینی شیرکوهی 1 , محمدرضا یمقانی 2
1 - کارشناسی ارشد، کامپیوتر، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
2 - استادیار، کامپیوتر، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
الکلمات المفتاحية: سیستم های توصیه گر, فیلترینگ مشارکتی, خوشه بندیk-means, بیمه,
ملخص المقالة :
با پیشرفتهایی که در صنعت بیمه صورت گرفته است، افراد زیادی برای دریافت خدمات بیمهای به شرکتهای دولتی و خصوصی بیمه مراجعه میکنند. پیش بینی اینکه مشتریان چه نوع بیمهای مناسب آن ها است و با توجه به شرایط فردی و اجتماعی به خصوص سطح درآمد کدام بیمه را ممکن است انتخاب کنند امری حیاتی است. در صنعت بیمه می توان با پیش بینی نوع بیمه ی انتخابی برای هر مشتری کار را برای افرادی که قصد خرید بیمه دارند و همچنین بیمه گزاران تا حد زیادی آسان کرد. خوشهبندی مشتریان، تحلیل ویژگیهای هر خوشه و دریافت اینکه در هر خوشه کدام بیمهها پرطرفدار هستند سپس استفاده از تکنیک فیلترینگ مشارکتی برای ارائه توصیه خرید بیمه به مشتریان، می تواند در روند تصمیم گیری و خرید خدمات بیمه ای موثر باشد. با استفاده از داده های موجود در مورد ویژگیهای فردی و اجتماعی افراد و نوع بیمههایی که انتخاب میکنند به همراه میزان رضایت آنها از خدمات بیمهای در صنعت بیمه میتوان به پیش بینی رفتار مشتری پرداخت و این امر با استفاده از الگوریتم خوشه بندی k-means و استفاده از تکنیک های سیستمهای توصیهگر مانند فیلترینگ مشارکتی تا حد زیادی میسر میشود.
[1] J. Neidhardt, T. Kuflik and W. Wörndl, “Special section on recommender systems in tourism,” Information Technology & Tourism, vol. 19, no. 1, pp. 83-85, 2018
[2] T.N. Nguyen and F. Ricci, “A chat-based group recommender system for tourism,” Information Technology & Tourism, vol. 18, no. 1, pp. 5-28, 2018.
[3] Bazargani, Mehdi, & Homayunpour, Zainab. (2019). Presenting a new method to discover the nearest neighbor in recommender systems based on collaborative filtering. Intelligent Multimedia Communication and Processing Systems, 1(1), 55-64.
[4] Manteghipour, Mahnaz, & Rahimkhani, Parisa. (1401). Designing a hybrid model for classification of imbalanced data in the field of Casualty Insurance. Intelligent multimedia processing and communication systems, 3(2), 1-9.
[5] M. Jalili, S. Ahmadian, M. Izadi, P. Moradi and M. Salehi, “Evaluating collaborative filtering recommender algorithms: a survey,” IEEE access, vol. 6, pp. 74003-74024, 2018.
[6] W.S. Lin, N. Cassaigne and T.C. Huan, “A framework of online shopping support for information recommendations,” Expert Systems with Applications, vol. 37, no. 10, pp. 6874-6884, 2010.
[7] L. Zhang, J. Zhu and Q. Liu, “A meta-analysis of mobile commerce adoption and the moderating effect of culture”, Computers in human behavior, vol. 28, no. 5, pp. 1902-1911, 2012.
[8] A. Salah, N. Rogovschi and M. Nadif, “A dynamic collaborative filtering system via a weighted clustering approach”, Neurocomputing, vol. 175, pp. 206-215, 2016.
[9] M. Taghizadeh, “A review of filtering methods in recommender systems”, 6th National Conference on Computer Science and Engineering and Information Technology, 859097, 2018. [Persian].
[10] M. Khamisi, S. Samiri, “Review and comparison of collaborative filtering algorithm in recommender systems”, International Conference on Science, Engineering, Technology and Technological Businesses, 903155, 2018. [Persian].
[11] F. Pajuelo-Holguera, J.A. Gómez-Pulido, F. Ortega and J.M. Granado-Criado, “Recommender system implementations for embedded collaborative filtering applications”, Microprocessors and Microsystems, vol. 73, p. 102997, 2020.
[12] S.K. Panda, S. K. Bhoi and M. Singh, “A collaborative filtering recommendation algorithm based on normalization approach”, Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 11, pp. 4643-4665, 2020.
[13] Yao, S., Halpern, Y., Thain, N., Wang, X., Lee, K., Prost, F., ... & Beutel, A. (2021). Measuring recommender system effects with simulated users. arXiv preprint arXiv:2101.04526.
[14] Teixeira, B., Martinho, D., Novais, P., Corchado, J., & Marreiros, G. (2022, August). Diabetic-Friendly Multi-agent Recommendation System for Restaurants Based on Social Media Sentiment Analysis and Multi-criteria Decision Making. In EPIA Conference on Artificial Intelligence (pp. 361-373). Cham: Springer International Publishing.
[15] Cui, Y. (2021). Intelligent recommendation system based on mathematical modeling in personalized data mining. Mathematical Problems in Engineering, 2021, 1-11.