پهنهبندی ریسک حریق در مناطق شهری با استفاده از روش رگرسیون لجستیک (مطالعه موردی: شهر کاشان)
الموضوعات :محمد امین وکیل الرعایا 1 , سعید ملماسی 2 , مژگان زعیم دار 3 , مهناز میرزا ابراهیمطهرانی 4
1 - دانشجوی دکترای محیط زیست – آمایش محیط زیست، دانشکده علوم و فنون دریایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار گروه علوم محیط زیست، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
3 - استادیار گروه علوم محیط زیست، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
4 - استادیار گروه علوم محیط زیست، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
الکلمات المفتاحية: پهنهبندی ریسک آتشسوزی, رگرسیون لجستیک, تحلیل ارتباط فضایی, اعتبارسنجی, فازی,
ملخص المقالة :
پیشینه و هدف مدیریت خطر آتشسوزی یک مسئله جهانی است، جایی که سیاستهای ایمنی شهری باید این موضوع را جدی بگیرند. یکی از زمینه های پژوهش برای کنترل آتش سوزی های شهری، شناسایی نقاط بحرانی آتش سوزی در منطقه است؛ زیرا عدم شناخت کافی این نقاط باعث وقوع و گسترش آتش در مناطق و کاربریهای مختلف، تأخیر در مهار آن و وارد آمدن خسارات مالی و صدمه جانی و همچنین آلودگیهای محیطی را در پی خواهد داشت. پهنهبندی ریسک حریق باهدف بهکارگیری در برنامهریزی و مدیریت در کنترل و حرائق شهری تاکنون در منطقه مطالعاتی این تحقیق موردتوجه نبوده و در قالب طرح تحقیقاتی و مطالعاتی، پژوهشی در این زمینه صورت نگرفته است. هدف از مطالعه حاضر تعیین و شناسایی معیارهای شاخص جهت پهنهبندی ریسک آتشسوزی در منطقه موردمطالعه، ایجاد نقشه خطر آتشسوزی بر اساس روش رگرسیون لجستیک و تطابق با نقشۀ واقعیت آتش و همچنین ارائه برنامههای مدیریتی و مدیریت بحران آتشسوزی در شهر کاشان است.مواد و روش ها مراحل وتکنیکهای مورداستفاده در این تحقیق در شش گام انجام گردید. اولین گام شناسایی معیارها و شاخصهای تأثیرگذار است. با استفاده از مطالعات کتابخانهای، اطلاعات بهدستآمده از مقالات معتبر و همچنین از طریق روش دلفی بهمنظور گردآوری نظر کارشناسان از مقیاس لیکرت استفاده شد. در گام دوم غربالگری معیارها متناسب باهدف انجام گرفت که معیارهای تأثیرگذار در این تحقیق عبارتاند از عوامل آسیبپذیر شامل (تراکم جمعیت، واحدهای صنعتی، تجاری- انبار، ساختمان مرتفع، بافت قدیمی و جایگاه سوخت) و همچنین ظرفیت عوامل کاهش شامل (ایستگاه آتشنشانی، جادهها و شیرهای هیدرانت) است. در گام سوم آمادهسازی دادهها و لایهها جهت تحلیل در سیستم اطلاعات جغرافیایی صورت گرفت. در مرحله بعد به استانداردسازی لایهها با استفاده از منطق فازی پرداخته شد.در ابتدا تابع فاصله (Distance) بر روی معیارها در محیط ادریسی سلوا اجرا گردید تا فاصله از هر پدیده مشخص شود. در ادامه به روش فازی همه معیارهای تعیینشده در بازه صفرتا 255 استاندارد شدند. نوع تابع استفادهشده در رویکرد منطق فازی از نوع خطی (Linear) بوده که انتخاب نوع تابع و آستانهها بر اساس مرور منابع و نظر کارشناسی انجام شد. بهمنظور تحلیل ارتباط فضایی بین حوادث آتش سوزی رخداده در سطح شهر و نقش فاکتورهای مؤثر در وقوع آن تمامی نقاط آتش سوزی 10 سال گذشته در سطح شهر از سال 1389 تا سال 1399 استخراج و به نقشه رستری تبدیل شد. در گام پنجم نقشه خطر آتشسوزی با استفاده از رگرسیون لجستیک تهیه شد که پس از مشخص شدن اعتبار مدل رگرسیون لجستیک با استفاده از شاخصهای تعیینشده، نقشه پهنهبندی ریسک حریق شهر کاشان ترسیم گردید. در گام آخر بهمنظور اعتبار سنجی مدل رگرسیون لجستیک از Chi Square, ROC و Pseudo R Square استفاده شد.نتایج و بحث مزایای استفاده از مدل رگرسیون لجستیک علاوه بر مدلسازی مشاهدهها، امکان پیشبینی احتمال تعلق هر فرد به هریک از سطوح متغیر وابسته و امکان محاسبهی مستقیم نسبت به شانس متغیرها با استفاده از حداکثر درستنمایی بیشینه ضرایب مدل است. همچنین نسبت به سایر تکنیکهای آماری، چند متغیره مانند آنالیز رگرسیون چندگانه و آنالیز تشخیصی، متغیر وابسته میتواند تنها دو متغیر داشته باشد که یکی احتمال وقوع حادثه و دیگری عدم وقوع آن است. بهمنظور تحلیل ارتباط فضایی بین حوادث آتش سوزی رخداده در سطح شهر و نقش فاکتورهای مؤثر در وقوع آن تمامی نقاط آتش سوزی 10 سال گذشته در سطح شهر از سال 1389 تا سال 1399 استخراج و به نقشه رستری تبدیل شد. خروجی مدل رگرسیون لجستیک، ضریبهایی بین صفر و یک دارد که به احتمالات بالاتر از 0.5 ارزش یک (وقوع آتشسوزی) و به احتمالات پایینتر از 0.5 ارزش صفر (عدم وقوع آتشسوزی) میدهد و بدین ترتیب نقشه بولین ریسک تولید میگردد. این احتمال پیشبینیشده در دامنه ۰ تا 1 سبب میشود تغییر لگاریتمی پیوسته باشد و خروجی مدل بهصورت یک نقشه پیشبینی مکانی احتمال تخریب ارائه شود. سپس در معادله رگرسیون لجستیک این لایه بهعنوان متغیر وابسته و پارامترهای مؤثر در پهنهبندی حریق بهعنوان متغیر مستقل معرفی گردید پس از ورود دادهها به مدل آماری رگرسیون لجستیک، با استفاده از پارامترهای مؤثر در نرمافزار IDRISI ، ضرایب مدل، استخراج گردید. پس از مشخص شدن اعتبار مدل رگرسیون لجستیک با استفاده از شاخصهای تعیینشده، نقشه پهنهبندی ریسک حریق شهر کاشان ترسیم گردید. درنهایت منطقه موردمطالعه ازنظر پتانسیل ریسک حریق به 5 کلاس بسیار کم، ریسک کم، متوسط، بسیار زیاد، ریسک زیاد تقسیم گردید. مساحت هر یک از 5 کلاس بهدستآمده به هکتار و درصد به ترتیب 8747.47، 4669.03، 132115، 1116.33، 788.96 هکتار و 90.94، 4.85، 2.19، 1.16، و 0.82 درصد به دست آمد.نتیجه گیری مقدار 0.95 بهدستآمده از راک ROC نشاندهنده همبستگی بسیار بالای بین متغیر مستقل و وابسته است. مقدار شاخص چی دو برابر با 110836.07 است؛ با توجه به اینکه مقدار آن بسیار بیشتر از مقدار آستانه تعیینشده است درنتیجه فرض صفر تمام ضرایب نیز رد میگردد. مقدار آزمودن PR2 در این پژوهش 0.47 می باشد، بنابراین مدل رگرسیون لجستیک برازش قابل قبولی را داشته است.
Ahmai ardakani, M. et al (2014). Zoning of forest fire potential areas using multi-criteria decision making methods. Journal of Geography and Environmental Planning. 60 (4): p. 49-66. (in Persian).
Anton, Howard (1994), Elementary Linear Algebra (7th ed.), John Wiley & Sons, pp. 170–171 , ISBN 978-0-471-58742-2
Abedi Gheshlaghi, H., et al (2020). "GIS-based forest fire risk mapping using the analytical network process and fuzzy logic." Journal of Environmental Planning and Management 63(3): 481-499.
Borna, F., et al (2016). "Habitat potential modeling of Astragalus gossypinus using ecological niche factor analysis and logistic regression (Case study: summer rangelands of Baladeh, Nour)". Journal of RS and GIS for Natural Resources, 7 (4): 45-61 (in Persian).
Chuvieco, E. and R.G. Congalton (1989). Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote sensing of Environment. 29(2): p. 147-159.
Chuvieco, E. and J. Salas (1996).Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Science. 10(3): p. 333-345.
Chuvieco, E. et al (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling. 221(1): p. 46-58.
Diefenbach, M.A. N.D. Weinstein, and J. O'reilly (1993). Scales for assessing perceptions of health hazard susceptibility. Health education research. 8(2): p. 181-192.
Del Hoyo, L. V., et al (2011). "Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data." European Journal of Forest Research 130(6): 983-996.
Eastman, J. Ronald (2003).IDRISI Kilimanjaro: guide to GIS and image processing, Worcester, MA: Clark Labs, Clark University, pp. 328
Erfani, M., and Ehsanzade, N (2016). " Recreation suitability zoning in part of the Oman sea coast". Journal of RS and GIS for Natural Resources, 12 (1): 107-123 (in Persian).
Habibi, A. A. Sarafrazi, and S. Izadyar (2014). Delphi technique theoretical framework in qualitative research. The International Journal of Engineering and Science. 3(4): p.8-13.
Hosmer DH, Lemeshow S (1989). Applied logistic regression. Wiley series in probability and mathematical statistics. Wiley, New York, 307 p
Jobson, J.D (2012). Applied multivariate data analysis: volume II: Categorical and Multivariate Methods: Springer Science & Business Media.
Juliá, P. B., et al (2021). "Post-earthquake fire risk assessment of historic urban areas: A scenario-based analysis applied to the Historic City Centre of Leiria, Portugal." International Journal of Disaster Risk Reduction 60: 102287.
Jennings, C.R (2013). Social and economic characteristics as determinants of residential fire risk in urban neighborhoods: A review of the literature. Fire Saf. J. 62, 13–19. [CrossRef]
Kosravi, Y. Jabbari, M (2011). Basics of Geographic Information Systems (GIS) and ARC GIS10 tutorial. Azar Kelk Publications: p. 100-150. (in Persian).
Li, S.Y. Tao, G. and Zhang, L.J (2018), "Fire Risk Assessment of High-rise Buildings Based on Gray-FAHP Mathematical Model", Procedia Engineering, Vol 211 No, pp. 395-402.
Lee, S. and B. Pradhan (2006). Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science. 115(6): p. 661-672.
Lewis, J.R (1993). Multipoint scales: Mean and median differences and observed significance levels. International Journal of Human Computer Interaction. 5(4): p. 383-392.
Langlois, André (1987). "Clark, WAV et Hosking, PL (1986) Statistical Methods for Geographers. New York, John Wiley and Sons. Cahiers de géographie du Québec 31.82: 91-92.
Martı´nez J, Martı´nez J, Martı´n P (2004). El factor humano en los incendios forestales: Ana´lisis de factores socio-econo´micos relacionados con la incidencia de incendios forestales en Espan˜a. In: Chuvieco E, Martı´n P (eds) Nuevas tecnologı´as para la estimacio´n del riesgo de incendios forestales. CSIC, Instituto de Economı´a y Geografı´a, Madrid, pp 101–142
Martı´nez J, Vega-Garcı´a C, Chuvieco E (2009). Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252
Motavalli, S. Esmaili, R. Hosseinzadeh, M.M (2009), The Signification of Sensitive Regions in the Vaz Catchment by Logistic Regression, Journal of Physiography, Volume 2, Number 5, Autumn, PP. 73-83.
Mrówczyńska, M., et al (2021). "Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools." Renewable and Sustainable Energy Reviews 137: 110598
Papari fard, S. and S Kiani, (2018), Investigation of the vulnerability of the old texture of Bushehr (traditional market area) against fire, civil engineering, Architecture and modern and city administration, Tehran. https://civilica.com/doc/821578 (in Persian)
Sowmya, S. and R. Somashekar (2010). Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India. Journal of Environmental Biology. 31(6): p. 969.
Schneider, L.C. and R.G. Pontius Jr (2001). Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment. 85(1-3): p. 83-94.
Taridala, S. et al (2017). Expert System Development for Urban Fire Hazard Assessment. Study Case: Kendari City, Indonesia. in IOP Conference Series: Earth and Environmental Science. IOP Publishing.
Vakilalroaya, M. and Zaeimdar, M (2107). The study of fire risk assessment models in urban areas, the third national conference on fire and urban safety. Third National Conference on Fire and Urban Safety, Tehran Municipality Fire and Safety Services. (in Persian).
World Health Organization (2011). Burn Prevention, Success Stories Lessons Learned; World Health Organization: Geneva, Switzerland.
Wei, Y.Y. Zhang, J.Y. and Wang, J (2018). "Research on Building Fire Risk Fast Assessment Method Based on Fuzzy comprehensive evaluation and SVM", Procedia Engineering, Vol 211 No, pp. 1141-1150.
Wang, K., et al (2021). "A POIs based method for determining spatial distribution of urban fire risk." Process Safety and Environmental Protection.
Xin, J. and C. Huang (2013). Fire risk analysis of residential buildings based on scenario clusters and its application in fire risk management. Fire Safety Journal. 62: p. 72-78.
Xu, D. et al (2006). Mapping forest fire risk zones with spatial data and principal component analysis. Science in China Series E: Technological Sciences. 49(1): p. 140-149.
Yagoub, M. and A.M. Jalil (2014). Urban Fire Risk Assessment Using GIS: Case Study on Sharjah, UAE. International Geoinformatics Research and Development Journal, 5 (3): p. 1-8.
Yamagishi, H. and L. Ayalew (2005). "The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan." Geomorphology 65(1-2): 15-31.
Zhang, Y (2013). Analysis on comprehensive risk assessment for urban fire: The case of Haikou City. Procedia Engineering. 52: p. 618-623.
_||_Ahmai ardakani, M. et al (2014). Zoning of forest fire potential areas using multi-criteria decision making methods. Journal of Geography and Environmental Planning. 60 (4): p. 49-66. (in Persian).
Anton, Howard (1994), Elementary Linear Algebra (7th ed.), John Wiley & Sons, pp. 170–171 , ISBN 978-0-471-58742-2
Abedi Gheshlaghi, H., et al (2020). "GIS-based forest fire risk mapping using the analytical network process and fuzzy logic." Journal of Environmental Planning and Management 63(3): 481-499.
Borna, F., et al (2016). "Habitat potential modeling of Astragalus gossypinus using ecological niche factor analysis and logistic regression (Case study: summer rangelands of Baladeh, Nour)". Journal of RS and GIS for Natural Resources, 7 (4): 45-61 (in Persian).
Chuvieco, E. and R.G. Congalton (1989). Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote sensing of Environment. 29(2): p. 147-159.
Chuvieco, E. and J. Salas (1996).Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Science. 10(3): p. 333-345.
Chuvieco, E. et al (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling. 221(1): p. 46-58.
Diefenbach, M.A. N.D. Weinstein, and J. O'reilly (1993). Scales for assessing perceptions of health hazard susceptibility. Health education research. 8(2): p. 181-192.
Del Hoyo, L. V., et al (2011). "Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data." European Journal of Forest Research 130(6): 983-996.
Eastman, J. Ronald (2003).IDRISI Kilimanjaro: guide to GIS and image processing, Worcester, MA: Clark Labs, Clark University, pp. 328
Erfani, M., and Ehsanzade, N (2016). " Recreation suitability zoning in part of the Oman sea coast". Journal of RS and GIS for Natural Resources, 12 (1): 107-123 (in Persian).
Habibi, A. A. Sarafrazi, and S. Izadyar (2014). Delphi technique theoretical framework in qualitative research. The International Journal of Engineering and Science. 3(4): p.8-13.
Hosmer DH, Lemeshow S (1989). Applied logistic regression. Wiley series in probability and mathematical statistics. Wiley, New York, 307 p
Jobson, J.D (2012). Applied multivariate data analysis: volume II: Categorical and Multivariate Methods: Springer Science & Business Media.
Juliá, P. B., et al (2021). "Post-earthquake fire risk assessment of historic urban areas: A scenario-based analysis applied to the Historic City Centre of Leiria, Portugal." International Journal of Disaster Risk Reduction 60: 102287.
Jennings, C.R (2013). Social and economic characteristics as determinants of residential fire risk in urban neighborhoods: A review of the literature. Fire Saf. J. 62, 13–19. [CrossRef]
Kosravi, Y. Jabbari, M (2011). Basics of Geographic Information Systems (GIS) and ARC GIS10 tutorial. Azar Kelk Publications: p. 100-150. (in Persian).
Li, S.Y. Tao, G. and Zhang, L.J (2018), "Fire Risk Assessment of High-rise Buildings Based on Gray-FAHP Mathematical Model", Procedia Engineering, Vol 211 No, pp. 395-402.
Lee, S. and B. Pradhan (2006). Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science. 115(6): p. 661-672.
Lewis, J.R (1993). Multipoint scales: Mean and median differences and observed significance levels. International Journal of Human Computer Interaction. 5(4): p. 383-392.
Langlois, André (1987). "Clark, WAV et Hosking, PL (1986) Statistical Methods for Geographers. New York, John Wiley and Sons. Cahiers de géographie du Québec 31.82: 91-92.
Martı´nez J, Martı´nez J, Martı´n P (2004). El factor humano en los incendios forestales: Ana´lisis de factores socio-econo´micos relacionados con la incidencia de incendios forestales en Espan˜a. In: Chuvieco E, Martı´n P (eds) Nuevas tecnologı´as para la estimacio´n del riesgo de incendios forestales. CSIC, Instituto de Economı´a y Geografı´a, Madrid, pp 101–142
Martı´nez J, Vega-Garcı´a C, Chuvieco E (2009). Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252
Motavalli, S. Esmaili, R. Hosseinzadeh, M.M (2009), The Signification of Sensitive Regions in the Vaz Catchment by Logistic Regression, Journal of Physiography, Volume 2, Number 5, Autumn, PP. 73-83.
Mrówczyńska, M., et al (2021). "Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools." Renewable and Sustainable Energy Reviews 137: 110598
Papari fard, S. and S Kiani, (2018), Investigation of the vulnerability of the old texture of Bushehr (traditional market area) against fire, civil engineering, Architecture and modern and city administration, Tehran. https://civilica.com/doc/821578 (in Persian)
Sowmya, S. and R. Somashekar (2010). Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India. Journal of Environmental Biology. 31(6): p. 969.
Schneider, L.C. and R.G. Pontius Jr (2001). Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment. 85(1-3): p. 83-94.
Taridala, S. et al (2017). Expert System Development for Urban Fire Hazard Assessment. Study Case: Kendari City, Indonesia. in IOP Conference Series: Earth and Environmental Science. IOP Publishing.
Vakilalroaya, M. and Zaeimdar, M (2107). The study of fire risk assessment models in urban areas, the third national conference on fire and urban safety. Third National Conference on Fire and Urban Safety, Tehran Municipality Fire and Safety Services. (in Persian).
World Health Organization (2011). Burn Prevention, Success Stories Lessons Learned; World Health Organization: Geneva, Switzerland.
Wei, Y.Y. Zhang, J.Y. and Wang, J (2018). "Research on Building Fire Risk Fast Assessment Method Based on Fuzzy comprehensive evaluation and SVM", Procedia Engineering, Vol 211 No, pp. 1141-1150.
Wang, K., et al (2021). "A POIs based method for determining spatial distribution of urban fire risk." Process Safety and Environmental Protection.
Xin, J. and C. Huang (2013). Fire risk analysis of residential buildings based on scenario clusters and its application in fire risk management. Fire Safety Journal. 62: p. 72-78.
Xu, D. et al (2006). Mapping forest fire risk zones with spatial data and principal component analysis. Science in China Series E: Technological Sciences. 49(1): p. 140-149.
Yagoub, M. and A.M. Jalil (2014). Urban Fire Risk Assessment Using GIS: Case Study on Sharjah, UAE. International Geoinformatics Research and Development Journal, 5 (3): p. 1-8.
Yamagishi, H. and L. Ayalew (2005). "The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan." Geomorphology 65(1-2): 15-31.
Zhang, Y (2013). Analysis on comprehensive risk assessment for urban fire: The case of Haikou City. Procedia Engineering. 52: p. 618-623.