ارزیابی مقایسه ای حساسیت به زمین لغزش با استفاده از روش های منطق فازی و تحلیل سلسله مراتبی
الموضوعات :
1 - استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران
2 - استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران
الکلمات المفتاحية: تحلیل سلسله مراتبی (AHP), بینالود, حساسیت زمین لغزش, سیستم اطلاعات جغرافیایی (GIS), منطق فازی,
ملخص المقالة :
پیشینه و هدف زمین لغزش یکی از گستردهترین و مخرب ترین پدیده ها در میان بلایایی طبیعی است. با توجه به توپوگرافی کوهستانی مرتفع، فعالیت تکتونیکی، لرزه خیزی زیاد، شرایط متنوع زمین شناسی و اقلیمی، اساساً ایران برای ایجاد طیف وسیعی از زمین لغزش شرایط طبیعی را دارد و این زمین لغزش ها سالانه خسارات جانی مالی فراوانی به کشور وارد می کنند. با توجه به اینکه پیشبینی زمان زمین لغزش بسیار دشوار است، از این رو شناسایی مناطق حساس به زمین لغزش و منطقه بندی این مناطق بر اساس خطر احتمالی بسیار مهم است. بنابراین باید مناطق مستعد زمین لغزش شناسایی شوند تا خسارات ناشی از زمین لغزش کاهش یابد. هدف اصلی از تجزیه و تحلیل حساسیت زمین لغزش شناسایی مناطق پر خطر و در نتیجه کاهش خسارات ناشی از زمینلغزش از طریق اقدامات مناسب است. ازآنجاکه پیش بینی دقیق وقوع زمین لغزش توسط علوم انسانی امکانپذیر نیست، بنابراین می توانیم با شناسایی مناطق مستعد لغزش و اولویت بندی آن ها از آسیب این پدیده جلوگیری کنیم. کوه های بینالود در استان خراسان رضوی، به دلیل شرایط زمین شناسی، ژئومورفولوژی، توپوگرافی، آب و هوا و پوشش گیاهی، دارای انواع حرکات تودهای است. از طریق ارزیابی حساسیت زمین لغزش و شناسایی مناطق پرخطر ازنظر زمین لغزش، می توانیم از خسارات احتمالی مالی و جانی ناشی از زمین لغزش در این منطقه را کاهش بدهیم. لذا برای حفظ سرمایه های ملی ضروری است تا در برخورد با بلایای طبیعی مدیریتی جامع اعمال گردد که منظور از آن اتخاذ تدابیر و فعالیت هایی است که موجب پیشگیری، کنترل وترمیم خسارت های ایجاد شده می گردد. نتایج این مطالعات می تواند بهعنوان اطلاعات بنیادی توسط مدیران و برنامه ریزان محیط زیست مورد استفاده قرار گیرد. به منظور تهیه نقشه های منطقه بندی خطر لغزش می توان از روش های مختلفی مانند منطق فازی، روش های آماری و فرایند تحلیلی سلسله مراتبی (AHP) استفاده کرد. از اوایل دهه 1970، بسیاری از دانشمندان تلاش کردهاند تا خطرات زمین لغزش را ارزیابی کنند و نقشه حساسیت خطر زمین لغزش را با استفاده از روش های مختلف مبتنی بر GIS تهیه کنند. هدف از این مطالعه ارزیابی و مقایسه نقشه حساسیت به زمین لغزش (LSM) در رشتهکوه های بینالود، با استفاده از روش های فازی و تحلیل سلسله مراتبی در محیط سیستم اطلاعات جغرافیایی، است.مواد و روش هادر این مطالعه به منظور ارزیابی حساسیت وقوع زمین لغزش در دامنه های کوه های بینالود از دو روش منطق فازی و تحلیل سلسله مراتبی در محیط سیستم اطلاعات جغرافیایی استفاده گردید. به این منظور، مهمترین عوامل مؤثر بر زمینلغزش های منطقه شامل شیب، جهت شیب، طبقات ارتفاعی، زمینشناسی، شبکه زهکشی (فاصله از رودخانه، تراکم آبراهه)، جاده (فاصله از جاده، تراکم جاده)، گسل (فاصله از گسل، تراکم گسل)، واحدهای مورفولوژیکی، شاخص های توپوگرافی (شاخص توان رودخانه (SPI)، شاخص رطوبت توپوگرافی (TWI) و شاخص طول شیب (LS))، شاخص های ژئومورفولوژیک (شاخص موقعیت توپوگرافی (TPI)، شاخص ناهمواری توپوگرافی (TRI) و شاخص انحنای سطح (Curvature Index)، کاربری اراضی، خطوط هم دما و خطوط هم بارش به عنوان عوامل مؤثر در رخداد زمینلغزش در منطقه موردمطالعه، شناسایی و مورد تجزیه و تحلیل قرار گرفتند. سپس نقشه پراکنش زمین لغزشهای منطقه تهیه شد. در ادامه وزن هریک از پارامترها و زیر پارامترها در پهنه بندی وقوع زمین لغزش به کمک روش تحلیل سلسله مراتبی(AHP) تعیین گردید. سپس با استفاده ابزارهای مناسب در محیط GIS این وزن ها در نقشه هر پارامتر ضرب و درنهایت نقشه های حاصله رویهم گذاری شده و نقشه نهایی پهنه بندی خطر زمین لغزش در منطقه مورد مطالعه تهیه شد. در روش فازی، بعد از فازی سازی لایه های مورد نظر در محیط ArcGIS، پهنه بندی خطر زمین لغزش با استفاده از عملگر گاما 0.8، در محیط GIS، صورت پذیرفت. و در نهایت صحت نقشه حساسیت زمین لغزش با استفاده از منحنی ROC و نسبت عددی NRi، مورد ارزیابی قرار گرفت.نتایج و بحث نتایج وزن دهی به پارامترهای مؤثر بر زمین لغزش با استفاده از روش تحلیل سلسله مراتبی (AHP) مبین این است به ترتیب عوامل زمینشناسی، شیب و گسل بیشترین تأثیر را در وقوع خطر زمینلغزش در منطقه مورد مطالعه دارند. نتایج تحلیل نقشه حساسیت خطر زمین لغزش با استفاده از AHP نشان داد به % 47.8 سطح منطقه در محدوده زیاد و خیلی زیاد واقعشده، همچنین % 13.4 در محدوده متوسط و % 38.8 در محدوده کم و خیلی کم قرارگرفته است. نتایج تحلیل نقشه حساسیت زمینلغزش با استفاده از منطق فازی بیانگر این است % 27.7 در محدوده زیاد و خیلی زیاد قرارگرفته است. همچنین % 15.5 در محدوده متوسط و % 56.8 در محدوده کم و خیلی کم واقعشده است. همچنین ارزیابی نقشه حساسیت زمینلغزش به کمک منحنی ROC، نشان داد که مساحت زیر نمودار (AUC)، در روش AHP و فازی به ترتیب برابر با % 81.7 و % 75.2 است که گویایی دقت و صحت ارزیابی خیلی خوب هر دو مدل هست. همینطور نسبت عددی NRi در روش AHP در طبقات حساسیت زمینلغزش، بیشتر از روش فازی است، زیرا روش AHP در مقایسه با روش فازی، درصد بالایی از زمینلغزشها را در مساحت کوچکتری بهعنوان پهنه با حساسیت زیاد و خیلی زیاد پوشش داده است.نتیجه گیری در این مطالعه بهمنظور ارزیابی و تهیه نقشه حساسیت زمینلغزش از دو روش فازی و تحلیل سلسله مراتبی در محیط سیستم اطلاعات جغرافیایی استفاده و عملکرد آنها باهم مقایسه شد. نقشه حساسیت زمینلغزش به پنج کلاس طبق بندی و عملکرد نتایج هر دو روش با استفاده از منحنی ROC و نسبت عددی NRi موردبررسی قرار گرفت. نتایج ارزیابی عملکرد دو روش فازی و تحلیل سلسله مراتبی با استفاده از منحنی ROC و نسبت عددی Nri نشان داد که روش تحلیل سلسله مراتبی نسبت به روش فازی درستی و دقت بیشتری در پیشبینی حساسیت زمینلغزش در منطقه موردمطالعه دارد. نقشههای حساسیت به زمینلغزش مانند نقشه تولیدشده در این مطالعه می تواند اطلاعات ارزشمندی برای برنامه ریزان و مهندسان برای سازمان دهی مجدد یا برنامه ریزی برنامه های جدید فراهم کند.
Arca D, Kutoğlu HŞ, Becek K. 2018. Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method. Environmental monitoring and assessment, 190(12): 1-14. doi:https://doi.org/10.1007/s10661-018-7085-5.
Baharvand S, Soori S. 2015. Landslide hazard zonation using artificial neural network (Case study: Sepiddasht-Lorestan, Iran). Journal of RS and GIS for Natural Resources, 6(4): 15-31. https://girs.iaubushehr.ac.ir/article_518870.html?lang=en. (In Persian).
Bera A, Mukhopadhyay BP, Das D. 2019. Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Natural Hazards, 96(2): 935-959. doi:https://doi.org/10.1007/s11069-019-03580-w.
Bui TD, Shahabi H, Shirzadi A, Chapi K, Alizadeh M, Chen W, Mohammadi A, Ahmad BB, Panahi M, Hong H. 2018. Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, malaysia. Remote Sensing, 10(10): 1527. doi:https://doi.org/10.3390/rs10101527.
Chen W, Panahi M, Pourghasemi HR. 2017. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena, 157: 310-324. doi:https://doi.org/10.1016/j.catena.2017.05.034.
Demir G. 2019. GIS-based landslide susceptibility mapping for a part of the North Anatolian Fault Zone between Reşadiye and Koyulhisar (Turkey). Catena, 183: 104211. doi:https://doi.org/10.1016/j.catena.2019.104211.
Fatemi SA, Bagheri V, Razifard M. 2018. Landslide susceptibility mapping using fuzzy logic system and its influences on mainlines in lashgarak region, Tehran, Iran. Geotechnical and Geological Engineering, 36(2): 915-937. doi:https://doi.org/10.1007/s10706-017-0365-y.
Gholami M, Ghachkanlu EN, Khosravi K, Pirasteh S. 2019. Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. Journal of Earth System Science, 128(2): 1-22. doi:https://doi.org/10.1007/s12040-018-1047-8.
Guerra AJT, Fullen MA, Jorge MdCO, Bezerra JFR, Shokr MS. 2017. Slope processes, mass movement and soil erosion: A review. Pedosphere, 27(1): 27-41. doi:https://doi.org/10.1016/S1002-0160(17)60294-7.
Hou E, Wang J, Chen W. 2018. A comparative study on groundwater spring potential analysis based on statistical index, index of entropy and certainty factors models. Geocarto International, 33(7): 754-769. doi:https://doi.org/10.1080/10106049.2017.1299801.
Khan H, Shafique M, Khan MA, Bacha MA, Shah SU, Calligaris C. 2019. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22(1): 11-24. doi:https://doi.org/10.1016/j.ejrs.2018.03.004.
Meena SR, Ghorbanzadeh O, Blaschke T. 2019. A comparative study of statistics-based landslide susceptibility models: A case study of the region affected by the gorkha earthquake in nepal. ISPRS international journal of geo-information, 8(2): 94. doi:https://doi.org/10.3390/ijgi8020094.
Mondal S, Mandal S. 2019. Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model. Applied Geomatics, 11(2): 129-146. doi:https://doi.org/10.1007/s12518-018-0248-9.
Nguyen TTN, Liu C-C. 2019. A new approach using AHP to generate landslide susceptibility maps in the Chen-Yu-Lan Watershed, Taiwan. Sensors, 19(3): 505. doi:https://doi.org/10.3390/s19030505.
Nicu IC. 2018. Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage. Environmental Earth Sciences, 77(3): 1-16. doi:https://doi.org/10.1007/s12665-018-7261-5.
Paoletti V, Tarallo D, Matano F, Rapolla A. 2013. Level-2 susceptibility zoning on seismic-induced landslides: An application to Sannio and Irpinia areas, Southern Italy. Physics and Chemistry of the Earth, Parts A/B/C, 63: 147-159. doi:https://doi.org/10.1016/j.pce.2013.02.002.
Peethambaran B, Anbalagan R, Kanungo D, Goswami A, Shihabudheen K. 2020. A comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian Himalayas. Catena, 195: 104751. doi:https://doi.org/10.1016/j.catena.2020.104751.
Rahmati M, Zand F. 2018. Landslide hazard zonation using geographic information System landslide (Case study: Robat-Siahpoush rural district, Lorestan province). Journal of RS and GIS for Natural Resources, 8(4): 63-75. doi:http://girs.iaubushehr.ac.ir/article_539092_en.html. (In Persian).
Saaty TL. 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1): 83-98. doi:https://doi.org/10.1504/IJSSCI.2008.017590.
Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet J-P. 2018. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology, 301: 10-20. doi:https://doi.org/10.1016/j.geomorph.2017.10.018.
Solaimani K, Mousavi SZ, Kavian A. 2013. Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arabian Journal of Geosciences, 6(7): 2557-2569. doi:https://doi.org/10.1007/s12517-012-0526-5.
Soma AS, Kubota T, Mizuno H. 2019. Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia. Journal of Mountain Science, 16(2): 383-401. doi:https://doi.org/10.1007/s11629-018-4884-7.
Tian Y, Xu C, Hong H, Zhou Q, Wang D. 2019. Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: an example of the 2013 Minxian (China) Mw 5.9 event. Geomatics, Natural Hazards and Risk, 10(1): 1-25. doi:https://doi.org/10.1080/19475705.2018.1487471.
Van Alphen B, Stoorvogel J. 2000. A functional approach to soil characterization in support of precision agriculture. Soil Science Society of America Journal, 64(5): 1706-1713. doi:https://doi.org/10.2136/sssaj2000.6451706x.
Yan F, Zhang Q, Ye S, Ren B. 2019. A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model. Geomorphology, 327: 170-187. doi:https://doi.org/10.1016/j.geomorph.2018.10.024.
Youssef AM, Pourghasemi HR, El-Haddad BA, Dhahry BK. 2016. Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia. Bulletin of Engineering Geology and the Environment, 75(1): 63-87. doi:https://doi.org/10.1007/s10064-015-0734-9.
Zhang T, Han L, Chen W, Shahabi H. 2018. Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling. Entropy, 20(11): 884. doi:https://doi.org/10.3390/e20110884.
_||_Arca D, Kutoğlu HŞ, Becek K. 2018. Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method. Environmental monitoring and assessment, 190(12): 1-14. doi:https://doi.org/10.1007/s10661-018-7085-5.
Baharvand S, Soori S. 2015. Landslide hazard zonation using artificial neural network (Case study: Sepiddasht-Lorestan, Iran). Journal of RS and GIS for Natural Resources, 6(4): 15-31. https://girs.iaubushehr.ac.ir/article_518870.html?lang=en. (In Persian).
Bera A, Mukhopadhyay BP, Das D. 2019. Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Natural Hazards, 96(2): 935-959. doi:https://doi.org/10.1007/s11069-019-03580-w.
Bui TD, Shahabi H, Shirzadi A, Chapi K, Alizadeh M, Chen W, Mohammadi A, Ahmad BB, Panahi M, Hong H. 2018. Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, malaysia. Remote Sensing, 10(10): 1527. doi:https://doi.org/10.3390/rs10101527.
Chen W, Panahi M, Pourghasemi HR. 2017. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena, 157: 310-324. doi:https://doi.org/10.1016/j.catena.2017.05.034.
Demir G. 2019. GIS-based landslide susceptibility mapping for a part of the North Anatolian Fault Zone between Reşadiye and Koyulhisar (Turkey). Catena, 183: 104211. doi:https://doi.org/10.1016/j.catena.2019.104211.
Fatemi SA, Bagheri V, Razifard M. 2018. Landslide susceptibility mapping using fuzzy logic system and its influences on mainlines in lashgarak region, Tehran, Iran. Geotechnical and Geological Engineering, 36(2): 915-937. doi:https://doi.org/10.1007/s10706-017-0365-y.
Gholami M, Ghachkanlu EN, Khosravi K, Pirasteh S. 2019. Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. Journal of Earth System Science, 128(2): 1-22. doi:https://doi.org/10.1007/s12040-018-1047-8.
Guerra AJT, Fullen MA, Jorge MdCO, Bezerra JFR, Shokr MS. 2017. Slope processes, mass movement and soil erosion: A review. Pedosphere, 27(1): 27-41. doi:https://doi.org/10.1016/S1002-0160(17)60294-7.
Hou E, Wang J, Chen W. 2018. A comparative study on groundwater spring potential analysis based on statistical index, index of entropy and certainty factors models. Geocarto International, 33(7): 754-769. doi:https://doi.org/10.1080/10106049.2017.1299801.
Khan H, Shafique M, Khan MA, Bacha MA, Shah SU, Calligaris C. 2019. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22(1): 11-24. doi:https://doi.org/10.1016/j.ejrs.2018.03.004.
Meena SR, Ghorbanzadeh O, Blaschke T. 2019. A comparative study of statistics-based landslide susceptibility models: A case study of the region affected by the gorkha earthquake in nepal. ISPRS international journal of geo-information, 8(2): 94. doi:https://doi.org/10.3390/ijgi8020094.
Mondal S, Mandal S. 2019. Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model. Applied Geomatics, 11(2): 129-146. doi:https://doi.org/10.1007/s12518-018-0248-9.
Nguyen TTN, Liu C-C. 2019. A new approach using AHP to generate landslide susceptibility maps in the Chen-Yu-Lan Watershed, Taiwan. Sensors, 19(3): 505. doi:https://doi.org/10.3390/s19030505.
Nicu IC. 2018. Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage. Environmental Earth Sciences, 77(3): 1-16. doi:https://doi.org/10.1007/s12665-018-7261-5.
Paoletti V, Tarallo D, Matano F, Rapolla A. 2013. Level-2 susceptibility zoning on seismic-induced landslides: An application to Sannio and Irpinia areas, Southern Italy. Physics and Chemistry of the Earth, Parts A/B/C, 63: 147-159. doi:https://doi.org/10.1016/j.pce.2013.02.002.
Peethambaran B, Anbalagan R, Kanungo D, Goswami A, Shihabudheen K. 2020. A comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian Himalayas. Catena, 195: 104751. doi:https://doi.org/10.1016/j.catena.2020.104751.
Rahmati M, Zand F. 2018. Landslide hazard zonation using geographic information System landslide (Case study: Robat-Siahpoush rural district, Lorestan province). Journal of RS and GIS for Natural Resources, 8(4): 63-75. doi:http://girs.iaubushehr.ac.ir/article_539092_en.html. (In Persian).
Saaty TL. 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1): 83-98. doi:https://doi.org/10.1504/IJSSCI.2008.017590.
Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet J-P. 2018. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology, 301: 10-20. doi:https://doi.org/10.1016/j.geomorph.2017.10.018.
Solaimani K, Mousavi SZ, Kavian A. 2013. Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arabian Journal of Geosciences, 6(7): 2557-2569. doi:https://doi.org/10.1007/s12517-012-0526-5.
Soma AS, Kubota T, Mizuno H. 2019. Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia. Journal of Mountain Science, 16(2): 383-401. doi:https://doi.org/10.1007/s11629-018-4884-7.
Tian Y, Xu C, Hong H, Zhou Q, Wang D. 2019. Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: an example of the 2013 Minxian (China) Mw 5.9 event. Geomatics, Natural Hazards and Risk, 10(1): 1-25. doi:https://doi.org/10.1080/19475705.2018.1487471.
Van Alphen B, Stoorvogel J. 2000. A functional approach to soil characterization in support of precision agriculture. Soil Science Society of America Journal, 64(5): 1706-1713. doi:https://doi.org/10.2136/sssaj2000.6451706x.
Yan F, Zhang Q, Ye S, Ren B. 2019. A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model. Geomorphology, 327: 170-187. doi:https://doi.org/10.1016/j.geomorph.2018.10.024.
Youssef AM, Pourghasemi HR, El-Haddad BA, Dhahry BK. 2016. Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia. Bulletin of Engineering Geology and the Environment, 75(1): 63-87. doi:https://doi.org/10.1007/s10064-015-0734-9.
Zhang T, Han L, Chen W, Shahabi H. 2018. Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling. Entropy, 20(11): 884. doi:https://doi.org/10.3390/e20110884.