مدل سازی تغییرات پوشش اراضی استان گلستان با استفاده از مدل سازی تغییرات کاربری (Land Change Modeler)
الموضوعات :فاطمه سالاریان 1 , محمدرضا طاطیان 2 , عبدالعظیم قانقرمه 3 , رضا تمرتاش 4
1 - دانشجوی دکتری علوم مرتع، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2 - دانشیار گروه مرتع، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
3 - استادیار گروه جغرافیا، دانشکده علوم انسانی، دانشگاه گلستان، گرگان، ایران
4 - دانشیار گروه مرتع، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
الکلمات المفتاحية: مدل سازی, مدل سازی تغییرات کاربری (LCM), استان گلستان, کاربری اراضی, زنجیره مارکوف,
ملخص المقالة :
پیشینه و هدف در طی چند دهة اخیر، تغییر کاربری اراضی تحت اثر عوامل محیطی و انسانی سبب بروز اثرات جدی بر محیط زیست و اقتصاد در استان گلستان شده است. از طرفی عرصه های مرتعی و طبیعی وسیعی بدون رعایت اصول اکولوژیکی و علمی به زیر کشت محصولات زراعی رفته یا در جهت مقاصد خاص مورد بهره برداری قرار گرفته و تبدیل به سایر کاربری ها شده اند. در حالی که بسیاری از این اراضی استعداد کاربری های جدید را دارا نبوده و استعداد فرسایشی بالایی دارند که در نتیجه این امر شاهد فرسایش خاک به ویژه در اراضی شیب دار و ایجاد سیلاب های ویرانگر خواهیم بود. لذا داشتن آگاهی از نوع و نحوه استفاده از اراضی و تغییرات احتمالی آن در طی زمان که از موارد مهم جهت برنامه ریزی و سیاست گذاری در کشور خواهد بود لازم و ضروری است. این مطالعه با هدف آشکارسازی تغییرات کاربری اراضی استان گلستان در طی سال های 1365 تا 1398 و پیش بینی وضعیت کاربری اراضی منطقه برای سال 1429 با استفاده از رویکرد مدل ساز تغییر زمین LCM انجام شد.مواد و روش ها به منظور پایش روند تغییرات کاربری اراضی منطقه مورد مطالعه از تصاویر ماهواره ای لندست 5 و 8 (سنجنده TM و OLI مربوط به سال های 1365، 1380 و 1398) استفاده شد. تفسیر و پردازش داده های ماهواره ای در نرم افزار ENVI انجام گرفت. سپس پیش پردازش های لازم بر روی تصاویر اعمال شد. ابتدا تصاویر مورد نظر با هم موزاییک شده و سپس بر اساس مرز استان برش داده شد. جهت شناسایی و تفکیک پدیده ها از یکدیگر، تصویر رنگی کاذب تهیه شد. در ادامه از روش طبقه بندی نظارت شده با روش حداکثر احتمال (Maximum likelihood) استفاده شد. در این مرحله پنج کلاس کاربری شامل مرتع، زراعت، جنگل، مسکونی و پیکره های آبی تعریف گردید. نقشه های کاربری اراضی مربوط به سال های 1365، 1380 و 1398 تهیه شد. از رویهم گذاری نقشه های پوشش زمین مربوط به سال های 1365، 1380 و 1398 به عنوان ورودی مدل LCM و نقشه های مدل رقومی ارتفاع (DEM) و لایه های جاده و آبراهه برای تحلیل تغییرات منطقه و پیش بینی تغییرات کاربری سرزمین سال 1429 استفاده شد. پس از انجام تجزیه و تحلیل های لازم به منظور آشکارسازی تغییرات کاربری اراضی میان دوره های زمانی مورد نظر، نقشه های تغییرات و انتقال کاربری ها تهیه شد. در نهایت میزان کاهش و افزایش در هر کاربری، میزان تغییرات خالص، تغییر خالص از سایر کاربری ها به یک طبقه مورد نظر، مناطق بدون تغییر و انتقال از هر کاربری به کاربری دیگر در طبقات گوناگون پوشش سرزمین به صورت نقشه و نمودار تهیه و مورد تجزیه و تحلیل واقع شد.نتایج و بحث این تحقیق با هدف پیش بینی و مدل سازی تغییرات کاربری اراضی در یک دوره 33 ساله در استان گلستان انجام شد. بر اساس نتایج طی این دوره، مساحت مراتع استان کاهش زیادی داشته که این میزان تغییرات کاهشی معادل مساحتی برابر با 181181.25 هکتار بوده است. بخش زیادی از کاهش مراتع در اثر تبدیل آن به اراضی زراعی است که دلیل آن را می توان افزایش جمعیت و نیاز به گسترش اراضی زراعی دانست. مساحت اراضی جنگلی نیز، طی سال های مذکور از مقدار 393018.75 هکتار به مقدار 349143.75 هکتار در سال 1398 رسیده که کاهشی بالغ بر 43875 هکتار (2.2 درصد) نشان داده است. به طور کلی تخریب عرصه های مرتعی و جنگلی امری است که بخصوص در کشورهای در حال توسعه به دلیل افزایش جمعیت، رشد تکنولوژی و رعایت نکردن اصول اکولوژیکی و اجرای قوانین قابل مشاهده است. همچنین نتایج حاصل از نقشه های طبقه بندی شده طی سال های مذکور نشان دهنده این است که بیشترین مقادیر تغییرات منطقه مرتبط با اراضی زراعی بوده به طوری که میزان این اراضی طی همین دوره 173700 هکتار برابر با 8.5 درصد افزایش داشته است. میزان تغییرات کاربری مربوط به کلاس اراضی مسکونی نیز با روند افزایشی از مقدار 18731.25 هکتار در سال 1365 به 37518.75 هکتار در سال 1398 رسیده که با افزایشی معادل 18787.50 هکتار (0.9 درصد) در طی این دوره مواجه بوده است. افزایش جمعیت به سرعت باعث توسعه مناطق مسکونی و شهری و افزایش سطح این نوع کاربری با شیب نسبتاً زیادی به خصوص در سال های اخیر شده است که می توان بخشی از آن را به برنامه های دولت در زمینه ساخت وساز مسکن در مناطق اطراف شهرها نسبت داد. این افزایش سطح اراضی زراعی به خصوص در مناطق مرکزی و شرق استان محسوس تر است و می تواند زنگ خطری برای آینده باشد به این معنی که در یک روند نامحسوس اراضی مرتعی و جنگلی تبدیل به اراضی زراعی دیم و پس از مدتی بهره برداری غیراصولی، در نهایت به صورت اراضی بایر و غیرقابل استفاده در می آیند. از طرفی این امر می تواند گویای افزایش جمعیت و تقاضای اسکان و در پی آن تأمین نیازهای ساکنین منطقه تهدیدی برای اراضی مرتعی باشد که لازم است به جای افزایش سطح اراضی زراعی و مسکونی و تبدیل اراضی مرتعی به چنین کاربری هایی که خود پشتوانه بخش کشاورزی محسوب می شوند، سیاست افزایش بهره وری در بخش کشاورزی دنبال گردد. در خصوص پیکره های آبی می توان بیان نمود که در طی این دوره زمانی به میزان 1.6 درصد معادل 32568.75 هکتار افزایش نشان داده است. این مقدار افزایش پیکره های آبی را تا حدی می توان به بارندگی های فراوان و آبگیری پیکره های آبی و حتی جاری شدن سیل در مناطق مختلف استان در سال 1398 نسبت داد. پیش بینی میزان تغییرات کاربری اراضی در سال 1429 گویای آن است که در سال های آتی نیز از سطح مراتع و جنگل ها در محدوده مطالعاتی به ترتیب به میزان 131906.25 و 291600 هکتار کاسته شده و در مقابل سطح اراضی زراعی و مناطق مسکونی به ترتیب به مقدار 164137.50 و 25313.25 هکتار افزایش خواهد یافت. از این رو اتخاذ تدابیر و سیاست های لازم در خصوص کاهش بیشتر اراضی جنگلی و مرتعی امری اجتناب ناپذیر خواهد بود.نتیجه گیری اگر چه شناخت شرایط کاربری های مختلف اراضی در طی دوره های آتی، برنامه ریزی برای آینده را به واسطه ایجاد اطلاعات به لحاظ الگوی پراکنش مکانی آن ها تسهیل می کند ولی حفظ و ایجاد شرایط پایدار برای آینده هم به لحاظ آماری و هم به لحاظ اکولوژیکی از محدودیت های آن است. این محدودیت ها نقش مهمی در استفاده مطمئن از کاربری های مختلف اراضی در فرآیند برنامه ریزی ایفا می کند. بنابراین ایجاد شرایط پایدار در منطقه و مدل سازی آن به منظور استفاده منظم و پایدار از منابع طبیعی یک منطقه از پیش شرط های رسیدن به چشم اندازها و اسناد بالادستی از جمله طرح توسعه پایدار است.
Abbas I, Muazu K, Ukoje J. 2010. Mapping land use-land cover and change detection in Kafur local government, Katsina, Nigeria (1995-2008) using remote sensing and GIS. Research Journal of Environmental and Earth Sciences, 2(1): 6-12.
Afifi M E. 2020. Modeling Land use changes using Markov chain model and LCM model. Journal of Applied Researches in Geographical Sciences, 20 (56):141-158. doi:http://doi.org/10.29252/jgs.20.56.141. (In Persian).
Bakr N, Weindorf D C, Bahnassy M H, Marei S M, El-Badawi M M. 2010. Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. Applied Geography, 30(4):592-605. doi:http://doi.org/10.1016/j.apgeog.2009.10.008.
Battsengel V, Tsolmon D, Byambakhuu G, Myagmartseren P, Otgonbayar L, Falin W. 2020. Spatiotemporal monitoring and prediction of land use/land cover changes using CA-Markov chain model: a case study in Orkhon Province, Mongolia. Proc. SPIE 11535, Remote Sensing Technologies and Applications in Urban Environments V, 115350E (20 September 2020). https://doi.org/10.1117/12.2574032.
Eastman J R. 2006. IDRISI Andes. Guide to GIS and Image Processing, Clark Labs, Clark University,
Worcester, MA.
Eastman J R. 2009. Idrisi taiga manual. Clark Lab. Clark University. Worcester, USA.333 p.
Eastman J R. 2014. Idrisi TerrSet 18.00. Clark University, Worcester, MA, USA. 392 p.
Fang S, George Z, Gertnera G Z, Sun Z, Andersonc A. 2005. The Impact of Interactions in Spatial Simulation of the Dynamics of Urban Sprawl, Landscape and Urban Planning, 73: 294–306. doi:http://dx.doi.org/10.1016/j.landurbplan.2004.08.006.
Farajollahi A, Asgari H, Ownagh M, Mahboubi M, Salman Mahini A. 2015. Monitoring and prediction of spatial and temporal changes of landuse/ cover (Case study: Marave Tappeh region, Golestan). Journal of RS and GIS for Natural Resources, 6(4), 1-14. (In Persian). http://girs.iaubushehr.ac.ir/article_518869.html?lang=en.
Fathollahi roudbary S, Nasirahmadi K, khanmohamadi M. 2018. land use change modeling using LCM module (Case study: NEKA region). Journal of Natural Ecosystem of Iran, 9(1): 53-69. http://neijournal.iaunour.ac.ir/article_544280_8c028323a531b13ee04e4dd4d45ae804.pdf. (In Persian).
Gholamalifard M, Mirzayi M, Joorabian Shooshtari S. 2014. Land use change modeling using artificial neural network and markov chain (Case study: Middle Coastal of Bushehr province). Journal of RS and GIS for Natural Resources, 5(1), 61-74. (In Persian). http://girs.iaubushehr.ac.ir/article_516599.html?lang=en.
Haibo Y, Longjiang D, Hengliang G, Jie Z. 2011. Tai'an land use Analysis and Prediction Based on RS and Markov Model. Procedia Environmental Sciences, 10:2625- 2610. doi:http://dx.doi.org/10.1016/j.proenv.2011.09.408.
Hasan S, Shi W, Zhu X, Abbas S, Khan H U A. 2020. Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data. Sustainability, 12(11): 1-24. doi: http://dx.doi.org/10.3390/su12114350.
Jokar Arsanjani J, Kainz W, Mousivand A. 2011. Tracking Dynamic Land Use Change Using Spatially Explicit Markov Chain Based on Cellular Automata: the Case of Tehran. International Journal of Image and Data Fusion, 2: 329-345. doi:https://doi.org/10.1080/19479832.2011.605397.
Kalnay E. Cai M. 2003. Impact of urbanization and land-use change on climate. Nature, 423(6939): 528- 531. doi:http://dx.doi.org/10.1038/nature01675.
Kindu M, Schneider T, Teketay D, Knoke T. 2016. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Science of The Total Environment, 547: 137-147. doi:http://dx.doi.org/10.1016/j.scitotenv.2015.12.127.
Lu D, Weng Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 5: 823–870. doi:http://dx.doi.org/10.1080/01431160600746456.
Martínez M L, Pérez-Maqueo O, Vázquez G, Castillo-Campos G, García-Franco J, Mehltreter K, Landgrave R. 2009. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. Forest Ecology and Management, 258(9): 1856-1863. doi:http://dx.doi.org/10.1016/j.foreco.2009.02.023.
Mishra V, Rai P, Mohan K. 2014. Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute "Jovan Cvijic", SASA, 64(1): 111–127. doi:http://dx.doi.org/10.2298/IJGI1401111M.
Mir Alizadehfard S, Alibakhshi S. 2016. Monitoring and forecasting of land use change by applying Markov chain model and land change modeler (Case study: Dehloran Bartash plains, Ilam). Journal of RS and GIS for Natural Resources, 7(2), 33-46. (In Persian). http://girs.iaubushehr.ac.ir/article_524153.html?lang=en
Mosaedi A, Sharifan H, Shahabi M. 2007. Risk Management by identification of microclimates in Golestan province. Applied research report, Iran Meteorological Organization, 171 p. (In Persian).
Nazari Samani A, Ghorbani M, Kohbanani H R. 2010. Landuse changes in taleghan watershed from 1987 to 2010. Rangeland, 4(3): 442-451. (In Persian).
Onate-vadiieso F, sendra J B. 2010. Aplication of GIS and Remote sensing technequs in generation of landuse scenario for hidrological modeling. Journal of Hydrology, 395 (4): 256-264. doi:https://doi.org/10.1016/j.jhydrol.2010.10.033.
Parker D C, Manson S M, Janssen M A, Hoffmann M J, Deadman M J. 2003. Multi agent systems for the simulation of land use and land cover change: A Review, Annals of the Association of American Geographers, 93(2): 314–337. doi:https://doi.org/10.1111/1467-8306.9302004.
Sari, F. 2020. Assessment of land use change effects on future beekeeping suitability via CA-Markov prediction model, Journal of Apicultural Science, 64(2): 263-276. doi:https://doi.org/10.2478/jas-2020-0020.
Szumacher I, Pabjanek P. 2017. Temporal changes in ecosystem services in european cities in the continental Biogeographical region in the period from 1990–2012. Sustainability, 9(4): 665. doi:http://dx.doi.org/10.3390/su9040665.
Vaclavik T, Rogan J. 2010. Identifying trends in land use/land cover changes in the context of post-socialist transformation in Central Europe: A case study of the greater Olomouc region, Czech Republic. GIS Science and Remote Sensing, 46 (1):54-76. doi:https://doi.org/10.2747/1548-1603.46.1.54.
Wang R, Murayama Y. 2017. Change of land use/cover in Tianjin city Based on the Markov and Cellular Automata models. ISPRS International Journal of Geo-Information, 6: 150. doi:https://doi.org/10.3390/ijgi6050150.
Wang SW, Gebru B M, Lamchin M, Kayastha R B, Lee W K. 2020. Land use and land cover change detection and prediction in the Kathmandu district of Nepal using remote sensing and GIS. Sustainability. 12(9):3925. doi:https://doi.org/10.3390/su12093925.
Yuan F, Sawaya K E, Loeffelholz B C, Bauer M E. 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98:317-328. doi:http://dx.doi.org/10.1016/j.rse.2005.08.006.
_||_Abbas I, Muazu K, Ukoje J. 2010. Mapping land use-land cover and change detection in Kafur local government, Katsina, Nigeria (1995-2008) using remote sensing and GIS. Research Journal of Environmental and Earth Sciences, 2(1): 6-12.
Afifi M E. 2020. Modeling Land use changes using Markov chain model and LCM model. Journal of Applied Researches in Geographical Sciences, 20 (56):141-158. doi:http://doi.org/10.29252/jgs.20.56.141. (In Persian).
Bakr N, Weindorf D C, Bahnassy M H, Marei S M, El-Badawi M M. 2010. Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. Applied Geography, 30(4):592-605. doi:http://doi.org/10.1016/j.apgeog.2009.10.008.
Battsengel V, Tsolmon D, Byambakhuu G, Myagmartseren P, Otgonbayar L, Falin W. 2020. Spatiotemporal monitoring and prediction of land use/land cover changes using CA-Markov chain model: a case study in Orkhon Province, Mongolia. Proc. SPIE 11535, Remote Sensing Technologies and Applications in Urban Environments V, 115350E (20 September 2020). https://doi.org/10.1117/12.2574032.
Eastman J R. 2006. IDRISI Andes. Guide to GIS and Image Processing, Clark Labs, Clark University,
Worcester, MA.
Eastman J R. 2009. Idrisi taiga manual. Clark Lab. Clark University. Worcester, USA.333 p.
Eastman J R. 2014. Idrisi TerrSet 18.00. Clark University, Worcester, MA, USA. 392 p.
Fang S, George Z, Gertnera G Z, Sun Z, Andersonc A. 2005. The Impact of Interactions in Spatial Simulation of the Dynamics of Urban Sprawl, Landscape and Urban Planning, 73: 294–306. doi:http://dx.doi.org/10.1016/j.landurbplan.2004.08.006.
Farajollahi A, Asgari H, Ownagh M, Mahboubi M, Salman Mahini A. 2015. Monitoring and prediction of spatial and temporal changes of landuse/ cover (Case study: Marave Tappeh region, Golestan). Journal of RS and GIS for Natural Resources, 6(4), 1-14. (In Persian). http://girs.iaubushehr.ac.ir/article_518869.html?lang=en.
Fathollahi roudbary S, Nasirahmadi K, khanmohamadi M. 2018. land use change modeling using LCM module (Case study: NEKA region). Journal of Natural Ecosystem of Iran, 9(1): 53-69. http://neijournal.iaunour.ac.ir/article_544280_8c028323a531b13ee04e4dd4d45ae804.pdf. (In Persian).
Gholamalifard M, Mirzayi M, Joorabian Shooshtari S. 2014. Land use change modeling using artificial neural network and markov chain (Case study: Middle Coastal of Bushehr province). Journal of RS and GIS for Natural Resources, 5(1), 61-74. (In Persian). http://girs.iaubushehr.ac.ir/article_516599.html?lang=en.
Haibo Y, Longjiang D, Hengliang G, Jie Z. 2011. Tai'an land use Analysis and Prediction Based on RS and Markov Model. Procedia Environmental Sciences, 10:2625- 2610. doi:http://dx.doi.org/10.1016/j.proenv.2011.09.408.
Hasan S, Shi W, Zhu X, Abbas S, Khan H U A. 2020. Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data. Sustainability, 12(11): 1-24. doi: http://dx.doi.org/10.3390/su12114350.
Jokar Arsanjani J, Kainz W, Mousivand A. 2011. Tracking Dynamic Land Use Change Using Spatially Explicit Markov Chain Based on Cellular Automata: the Case of Tehran. International Journal of Image and Data Fusion, 2: 329-345. doi:https://doi.org/10.1080/19479832.2011.605397.
Kalnay E. Cai M. 2003. Impact of urbanization and land-use change on climate. Nature, 423(6939): 528- 531. doi:http://dx.doi.org/10.1038/nature01675.
Kindu M, Schneider T, Teketay D, Knoke T. 2016. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Science of The Total Environment, 547: 137-147. doi:http://dx.doi.org/10.1016/j.scitotenv.2015.12.127.
Lu D, Weng Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 5: 823–870. doi:http://dx.doi.org/10.1080/01431160600746456.
Martínez M L, Pérez-Maqueo O, Vázquez G, Castillo-Campos G, García-Franco J, Mehltreter K, Landgrave R. 2009. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. Forest Ecology and Management, 258(9): 1856-1863. doi:http://dx.doi.org/10.1016/j.foreco.2009.02.023.
Mishra V, Rai P, Mohan K. 2014. Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute "Jovan Cvijic", SASA, 64(1): 111–127. doi:http://dx.doi.org/10.2298/IJGI1401111M.
Mir Alizadehfard S, Alibakhshi S. 2016. Monitoring and forecasting of land use change by applying Markov chain model and land change modeler (Case study: Dehloran Bartash plains, Ilam). Journal of RS and GIS for Natural Resources, 7(2), 33-46. (In Persian). http://girs.iaubushehr.ac.ir/article_524153.html?lang=en
Mosaedi A, Sharifan H, Shahabi M. 2007. Risk Management by identification of microclimates in Golestan province. Applied research report, Iran Meteorological Organization, 171 p. (In Persian).
Nazari Samani A, Ghorbani M, Kohbanani H R. 2010. Landuse changes in taleghan watershed from 1987 to 2010. Rangeland, 4(3): 442-451. (In Persian).
Onate-vadiieso F, sendra J B. 2010. Aplication of GIS and Remote sensing technequs in generation of landuse scenario for hidrological modeling. Journal of Hydrology, 395 (4): 256-264. doi:https://doi.org/10.1016/j.jhydrol.2010.10.033.
Parker D C, Manson S M, Janssen M A, Hoffmann M J, Deadman M J. 2003. Multi agent systems for the simulation of land use and land cover change: A Review, Annals of the Association of American Geographers, 93(2): 314–337. doi:https://doi.org/10.1111/1467-8306.9302004.
Sari, F. 2020. Assessment of land use change effects on future beekeeping suitability via CA-Markov prediction model, Journal of Apicultural Science, 64(2): 263-276. doi:https://doi.org/10.2478/jas-2020-0020.
Szumacher I, Pabjanek P. 2017. Temporal changes in ecosystem services in european cities in the continental Biogeographical region in the period from 1990–2012. Sustainability, 9(4): 665. doi:http://dx.doi.org/10.3390/su9040665.
Vaclavik T, Rogan J. 2010. Identifying trends in land use/land cover changes in the context of post-socialist transformation in Central Europe: A case study of the greater Olomouc region, Czech Republic. GIS Science and Remote Sensing, 46 (1):54-76. doi:https://doi.org/10.2747/1548-1603.46.1.54.
Wang R, Murayama Y. 2017. Change of land use/cover in Tianjin city Based on the Markov and Cellular Automata models. ISPRS International Journal of Geo-Information, 6: 150. doi:https://doi.org/10.3390/ijgi6050150.
Wang SW, Gebru B M, Lamchin M, Kayastha R B, Lee W K. 2020. Land use and land cover change detection and prediction in the Kathmandu district of Nepal using remote sensing and GIS. Sustainability. 12(9):3925. doi:https://doi.org/10.3390/su12093925.
Yuan F, Sawaya K E, Loeffelholz B C, Bauer M E. 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98:317-328. doi:http://dx.doi.org/10.1016/j.rse.2005.08.006.