ارائه روش تلفیقی کاهش نویز داده کاوی برای تخمین ماده آلی خاک با طیف سنجی VNIR
الموضوعات :الهه اکبری 1 , سهام میرزایی 2 , آرا تومانیان 3 , علی درویشی بلورانی 4 , حسینعلی بهرامی 5
1 - استادیار گروه سنجشازدور و GIS، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران
2 - دانشجوی دکتری سنجشازدور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران، ایران
3 - دانشیار گروه سنجشازدور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران
4 - دانشیار گروه سنجش ازدور و سیستم اطلاعات جغرافیایی، دانشگاه تهران،
5 - استاد، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران
الکلمات المفتاحية: رگرسیون کمترین مربعات جزیی, درخت رگرسیون ارتقا یافته, جنوب غربی تهران, طیفسنجی, ماده آلی خاک,
ملخص المقالة :
پیشینه و هدف خاک به عنوان منبع طبیعی ناهمگن و بزرگترین مخزن کربن آلی در اکوسیستم زمینی، از فرآیندها و مکانیسم های پیچیده ای تشکیل شده است. ضرورت برآورد اطلاعات دقیق خاک در مقیاس ملی و منطقه ای به منظور بهبود مدیریت خاک و درک خصوصیات خاک و چگونگی تاثیرگذاری آن در کشاورزی، منجر به علاقه مند شدن محققین به این حوزه شده است. محتوای (SOM) به عنوان شاخص کیفیت خاک در حاصلخیزی آن و تولید مواد غذایی تاثیرگذار است و نیز به عنوان یک متغیر کلیدی در مباحث محیطی و کشاورزی محسوب می شود. جمع آوری تعداد زیادی داده خاک دقیق با هدف مدیریت منابع غذایی برای جمعیت آینده ضروری است. بنابراین استفاده از روش های تخمین سریع و ارزان و البته افزایش دقت برآورد محتوای SOM در ارزیابی و مدیریت منابع خاک می تواند کمک کننده باشد. در کشاورزی دقیق، مقیاس اطلاعات خاک مورد نیاز برای مدیریت اراضی و محصول بسیار کوچکتر بوده و به طور معمول مقیاس جمع آوری داده های میدانی جوابگوی این نیاز نمی باشد. نمونه برداری و آنالیز تعداد زیاد نمونه خاک و تهیه نقشه توزیع SOM، برای مناطق وسیع و بزرگ، بسیار دشوار است. علاوه بر این، روش های سنتی آزمایشگاهی تجزیه و تحلیل خاک برای نمونه برداری زیاد نیاز به نیروی کار بیشتر بوده و علاوه براین زمان بر و هزینه بر است و نیاز به اپراتور آزمایشگاه متخصص دارد. هدف از تحقیق حاضر، مقایسه عملکرد دو روش PLSR و روش یادگیری ماشین درخت رگرسیون ارتقا یافته (BRT) برای پیش بینی مواد آلی خاک با استفاده از طیف VNIR، است. با استفاده از ترکیب تبدیل موجک و تشخیص باندهای مستقل، نویزهای موجود در داده های طیف سنجی خاک کاهش یافته است. علاوه بر این، طیف ها یا باندهای مستقل و موثر در طیف سنجی مواد آلی خاک انتخاب گردیدند. براین اساس، در این تحقیق، روش های Wavelet-PCA-PLSR و Wavelet-PCA- BRT توسعه داده شده است و کارایی هر یک از آن ها ارزیابی می گردد.مواد و روش ها 42 نمونه خاک از منطقه ناهمگن کشاورزی شهری در تهران در 30-0 سانتی متر خاک جمع آوری گردید. ماده آلی خاک با استفاده از روش والکی بلک و بازتاب طیفی خاک با استفاده از طیف سنج FieldSpec3 اندازه گیری شد. مشتق اول و دوم بازتاب، جذب طیفی و مشتق اول و دوم آن محاسبه گردید. به منظور کاهش نویز و هموار سازی طیف، از روش تبدیل موجک تابع ماتریس Sym8 استفاده شده است. همچنین، تبدیل موجک به منظور نشان دادن و بارزسازی ویژگی ها در طیف انجام می شود. از تجزیه و تحلیل مولفه های اصلی و آزمون هادلینگز با فاصله اطمینان 95% به منظور تشخیص داده های پرت استفاده شد. پس از حذف داده پرت از هر مجموعه، روش PLSR و درخت رگرسیون ارتقا یافته بر روی بازتاب، جذب و مشتق اول و دوم آنها در 5 سطح از تبدیل موجک اجرا شده است. سپس، با مقایسه نتایج، مدل مناسب از طریق اعتبارسنجی انتخاب شد. در هنگام استفاده از نمونه عددی، به جای درخت تصمیم گیری از درخت رگرسیون استفاده می شود، اما روند آن ها یکسان است. در درخت رگرسیون از جستجو حریصانه استفاده می شود. بنابراین، با پاسخ دادن به سوال باینری که حداکثر اطلاعات در مورد متغییر پاسخ از طریق کدام نود بدست می آید، گره ریشه و دو فرزند آن تعیین می گردد. این فرایند در هر گره فرزند تکرار می شود. تولید ساختمان درخت به صورت بازگشتی تکرار شده است و یک معیار توقف معمولی در نظر گرفته می شود. معیار توقف می تواند نظیر رسیدن به انشعابی که قابل تقسیم نیست و اطلاعات کمتری می دهد و یا زمانی که اطلاعات در گره حاوی کمتر از، پنج درصد از کل داده ها است، باشد. همچنین، سعی در به حداقل رساندن اندازه درخت است. برای تقسیم گره، عامل جینی، عامل آنتروپی و غیره به منظور به حداقل رساندن این عوامل استفاده شده است. علاوه بر این، در هر شاخه، مجموع مربع خطاها محاسبه شده و آن هایی که مقادیر حداقل دارند، انتخاب می شود. روش درخت رگرسیون ارتقا یافته، دو روش درخت رگرسیون و تکنیک ارتقا را به منظور بهبود توان پیش بینی هر کدام از آن ها ترکیب می کند. به منظور کالیبراسیون و اعتبارسنجی مدل، به طور تصادفی به ترتیب 30 و 12 نمونه خاک انتخاب و برای بیان صحت مدل ها از آماره های R2 و RMSE استفاده شده است. علاوه بر این، برای انتخاب بهترین فاکتور تولید مدل PLSR برای هر طیف، واریانس و باقی مانده مقادیر برآوردی و RMSE اعتبارسنجی استفاده شد. در نهایت، برای ایجاد سطح پیوسته و آگاهی از نحوه تغییر مواد آلی خاک در منطقه، نقشه مواد آلی خاک با استفاده از تصویر ماهواره ای لندست OLI و روش با دقت بیشتر تولید شد.نتایج و بحث برآورد رضایت بخش میزان SOM، ایجاد سطوح پیوسته با دقت بیشتر براساس کاهش نویز و حفظ داده های مفید، همواره مورد توجه محققین بوده است. در این تحقیق نیز با استفاده از داده های طیف سنجی خاک و اندازه گیری آزمایشگاهی میزان مواد آلی، سعی در برآورد چنین سطح پیوست ه ای به منظور تخمین SOM بوده است. با استفاده از تبدیل موجک و حذف داده های پرت براساس هادلینگز در روش PCA، داده های مفید برای تولید سطح پیوسته استخراج شدند. در این روش ، باندها یا طیف های مستقل و موثر در مدل باقی می مانند. در حالی که، لین و همکاران به منظور انتخاب باندهای مناسب در تخمین مواد آلی خاک از روش تبدیل موجک و همبستگی استفاده نموده اند. با استفاده از روش همبستگی در مناطق ناهمگن همانند منطقه مورد مطالعه در این تحقیق، نتایج رضایت بخشی بدست نمی آید. روش PCA به طور غیر نظارت شده، با در نظر گرفتن مقادیر داده، اجزای اصلی و مقادیر و بردارهای ویژه را محاسبه نموده و سعی در ماکزیمم نمودن ماتریس کوواریانس براساس تجزیه مقادیر منفرد دارد. مدل های تخمین مواد آلی خاک به دو روش PLSR و BRT برای طیف بازتابی، جذبی و مشتق اول و دوم آن ها، اجرا شد. بررسی نتایج بدست آمده از توسعه این دو مدل حاکی از این است که مدل BRT، با مقادیر RMSE و R2، به ترتیب 0.58 و 0.94، در داده مشتق دوم طیف اصلی، نتایج بهتری را بدست آورده است. از طرفی، مقادیر RMSE و R2 در مدل PLSR برای داده مشتق اول طیف اصلی، به ترتیب 1.20338 و 0.938 بدست آمده است. بطور کلی مقایسه RMSE مدل BRT و مدل PLSR، دلالت بر نتایج بهتر مدل BRT در این منطقه دارد.نتیجه گیری نتایج این تحقیق موید این مطلب است که در مناطق ناهمگن کشاورزی - شهری، می توان از پتانسیل مدل های توسعه داده شده Wavelet-PCA-PLSR و Wavelet-PCA-BRT برای تخمین مواد آلی خاک استفاده نمود. چرا که اندازه گیری میدانی ویژگی های شیمیایی خاک نظیر مواد آلی بسیار زمان و هزینه بر است. علاوه بر این، امکان اندازه گیری این ویژگی ها در پوشش وسیع وجود ندارد. با استفاده از این توابع پیوسته و تصویر ماهواره ای، می توان نقشه مقادیر مواد آلی خاک را در پوشش وسیع تولید نمود تا از آن بتوان در مطالعاتی نظیر پتانسیل کشت، حاصلخیزی خاک و توسعه پایدار آن بهره برداری نمود.
Alavipanah S.K, Damavandi A.A, Mirzaie S, Rezaie A, Matinfar H.R, Hamzeh S, Teymori H, Javad Zarrin I. 2016. Remote sensing application in evaluation of soil characteristics in desert areas. Natural Environment Change, 2(1): 1-24.
Attaeian B, Shojaeefar S, Zandieh V, Hashemi S.S. 2018. Study of soil organic carbon changes in two critical and vulnerable areas of Qahavand plain rangelands using remote sensing and GIS. RS & GIS for Natural Resources, 8(4): 76-90. (In Persian).
Dai F, Zhou Q, Lv Z, Wang X, Liu G. 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45: 184-194. doi: https://doi.org/10.1016/j.ecolind.2014.04.003.
Doetterl S, Stevens A, Van Oost K, Quine T.A, Van Wesemael B. 2013. Spatially-explicit regional-scale prediction of soil organic carbon stocks in cropland using environmental variables and mixed model approaches. Geoderma, 204: 31-42. doi:https://doi.org/10.1016/j.geoderma.2013.04.007
Friedman J.H. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics: 1189-1232. doi:https://doi.org/10.1214/aos/1013203451.
Castaldi F, Palombo A, Pascucci S, Pignatti S, Santini F, Casa R. 2015. Reducing the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A Case Study Using Simulated PRISMA Data. Remote Sensing, 7(11): 15561-15582. https://doi.org/10.3390/rs71115561.
Groenigen J.W, Mutters C.S, Horwath W.R, Van Kessel C. 2003. NIR and DRIFT-MIR spectrometry of soils for predicting soil and crop parameters in a flooded field. Plant and Soil, 250(1): 155-165. doi:https://doi.org/10.1023/A:1022893520315.
Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6): 417-441. doi: 10.1037/h0071325.
Khanamani A, Jafari R, Sangoony H, Shahbazi A. 2011. Evaluation of soil status using RS and GIS technology (Case study: Segzi plain). Journal of Applied RS & GIS Techniques in Natural Resource Science, 2(3): 25-37. https://www.sid.ir/en/journal/ViewPaper.aspx?id=250690. (In Persian).
Kuang B, Tekin Y, Mouazen A.M. 2015. Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil and Tillage Research, 146: 243-252. doi:https://doi.org/10.1016/j.still.2014.11.00.
Lacoste M, Minasny B, McBratney A, Michot D, Viaud V, Walter C. 2014. High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 213: 296-311. doi:https://doi.org/10.1016/j.geoderma.2013.07.002.
Liaghat S, Ehsani R, Mansor S, Shafri H.Z, Meon S, Sankaran S, Azam S.H. 2014. Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 35(10): 3427-3439. doi:https://doi.org/10.1080/01431161.2014.903353.
Lin L, Wang Y, Teng J, Wang X. 2016. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression. Environmental Monitoring and Assessment, 188(2): 1-11. doi:https://doi.org/10.1007/s10661-016-5107-8.
Liu L, Ji, M, Dong Y, Zhang R, Buchroithner M. 2016. Quantitative retrieval of organic soil properties from Visible Near-Infrared Shortwave Infrared (Vis-NIR-SWIR) spectroscopy using fractal-based feature extraction. Remote Sensing, 8(12): 1035. doi:https://doi.org/10.3390/rs8121035.
McCarty G.W, Reeves J.B, Reeves V.B, Follett R.F, Kimble J.M. 2002. Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Science Society of America Journal, 66(2): 640-646. doi:https://doi.org/10.1016/j.geoderma.2009.04.005.
Mirzaei S, Darvishi Boloorani A, Bahrami H.A, Alavipanah, S.K, Mousivand A. 2021. Moisture influence reducing on soil reflectance using EPO for organic carbon prediction. 7th International Conference on Agriculture, Environment, Urban and Rural. Tbilisi, Georgia. 16 June. https://civilica.com/doc/1256685. (In Persian).
Morellos A, Pantazi X.E, Moshou, D, Alexandridis T, Whetton R, Tziotzios G, Wiebensohn J, Bill R, Mouazen A.M. 2016. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering. doi:https://doi.org/10.1016/j.biosystemseng.2016.04.018.
Mouazen A.M, Kuang B, De Baerdemaeker J, Ramon H. 2010. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 158(1): 23-31. doi:https://doi.org/10.1016/j.geoderma.2010.03.001.
Nawar S, Abdul Munnaf M, Mouazen A.M. 2020. Machine learning based on-line prediction of soil organic carbon after removal of soil moisture effect. Remote Sensing, 12(8): 1308. https://doi.org/10.3390/rs12081308.
Nocita M, Kooistra L, Bachmann M, Müller A, Powell M, Weel S. 2011. Predictions of soil surface and topsoil organic carbon content through the use of laboratory and field spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa. Geoderma, 167: 295-302. doi:https://doi.org/10.1016/j.geoderma.2011.09.018.
Ghazi M, Bahrami H.A, Darvishi Boloorani A, Mirzaei S. 2018. Estimating the measure of the soil’s lime in dust’s centers of Tehran province by using of VINR spectroscopy and satellite images of OLI. RS & GIS for Natural Resources, 8(4): 1-16, https://www.sid.ir/en/journal/ViewPaper.aspx?id=597225 (In Persian).
Steffens M, Kohlpaintner M, Buddenbaum H. 2014. Fine spatial resolution mapping of soil organic matter quality in a Histosol profile. European Journal of Soil Science, 65(6): 827-839. doi: https://doi.org/10.1111/ejss.12182.
Tekin Y, Kuang B, Mouazen A.M. 2013. Potential of on-line visible and near infrared spectroscopy for measurement of pH for deriving variable rate lime recommendations. Sensors, 13(8): 10177-10190. doi:https://doi.org/10.3390/s130810177.
Viscarra Rossel R.A, Behrens, T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1): 46-54. doi:https://doi.org/10.1016/j.geoderma.2009.12.025.
Viscarra Rossel R.A, Hicks W.S. 2015. Soil organic carbon and its fractions estimated by visible–near infrared transfer functions. European Journal of Soil Science, 66(3): 438-450. doi:https://doi.org/10.1111/ejss.12237.
Viscarra Rossel R.A, Cattle S.R, Ortega A, Fouad Y. 2009. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma, 150(3): 253-266. doi:https://doi.org/10.1016/j.geoderma.2009.01.025.
Vohland M, Besold J, Hill J, Fründ H.C. 2011. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma, 166(1): 198-205. doi:https://doi.org/10.1016/j.geoderma.2011.08.001.
Wang Y, Wang F, Huang J, Wang X, Liu Z. 2009. Validation of artificial neural network techniques in the estimation of nitrogen concentration in rape using canopy hyperspectral reflectance data. International Journal of Remote Sensing, 30(17): 4493-4505. doi:https://doi.org/10.1080/01431160802577998.
Yang H, Li J. 2013. Predictions of soil organic carbon using laboratory-based hyperspectral data in the northern Tianshan Mountains, China. Environmental Monitoring and Assessment, 185(5): 3897-3908. doi:https://doi.org/10.1007/s10661-012-2838-z.
Yang R.M, Zhang G.L, Liu F, Lu Y.Y, Yang F, Yang F, Yang M, Zhao Y.G, Li D.C. 2016. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60: 870-878. doi:https://doi.org/10.1016/j.ecolind.2015.08.036.
_||_Alavipanah S.K, Damavandi A.A, Mirzaie S, Rezaie A, Matinfar H.R, Hamzeh S, Teymori H, Javad Zarrin I. 2016. Remote sensing application in evaluation of soil characteristics in desert areas. Natural Environment Change, 2(1): 1-24.
Attaeian B, Shojaeefar S, Zandieh V, Hashemi S.S. 2018. Study of soil organic carbon changes in two critical and vulnerable areas of Qahavand plain rangelands using remote sensing and GIS. RS & GIS for Natural Resources, 8(4): 76-90. (In Persian).
Dai F, Zhou Q, Lv Z, Wang X, Liu G. 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45: 184-194. doi: https://doi.org/10.1016/j.ecolind.2014.04.003.
Doetterl S, Stevens A, Van Oost K, Quine T.A, Van Wesemael B. 2013. Spatially-explicit regional-scale prediction of soil organic carbon stocks in cropland using environmental variables and mixed model approaches. Geoderma, 204: 31-42. doi:https://doi.org/10.1016/j.geoderma.2013.04.007
Friedman J.H. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics: 1189-1232. doi:https://doi.org/10.1214/aos/1013203451.
Castaldi F, Palombo A, Pascucci S, Pignatti S, Santini F, Casa R. 2015. Reducing the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A Case Study Using Simulated PRISMA Data. Remote Sensing, 7(11): 15561-15582. https://doi.org/10.3390/rs71115561.
Groenigen J.W, Mutters C.S, Horwath W.R, Van Kessel C. 2003. NIR and DRIFT-MIR spectrometry of soils for predicting soil and crop parameters in a flooded field. Plant and Soil, 250(1): 155-165. doi:https://doi.org/10.1023/A:1022893520315.
Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6): 417-441. doi: 10.1037/h0071325.
Khanamani A, Jafari R, Sangoony H, Shahbazi A. 2011. Evaluation of soil status using RS and GIS technology (Case study: Segzi plain). Journal of Applied RS & GIS Techniques in Natural Resource Science, 2(3): 25-37. https://www.sid.ir/en/journal/ViewPaper.aspx?id=250690. (In Persian).
Kuang B, Tekin Y, Mouazen A.M. 2015. Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil and Tillage Research, 146: 243-252. doi:https://doi.org/10.1016/j.still.2014.11.00.
Lacoste M, Minasny B, McBratney A, Michot D, Viaud V, Walter C. 2014. High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 213: 296-311. doi:https://doi.org/10.1016/j.geoderma.2013.07.002.
Liaghat S, Ehsani R, Mansor S, Shafri H.Z, Meon S, Sankaran S, Azam S.H. 2014. Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 35(10): 3427-3439. doi:https://doi.org/10.1080/01431161.2014.903353.
Lin L, Wang Y, Teng J, Wang X. 2016. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression. Environmental Monitoring and Assessment, 188(2): 1-11. doi:https://doi.org/10.1007/s10661-016-5107-8.
Liu L, Ji, M, Dong Y, Zhang R, Buchroithner M. 2016. Quantitative retrieval of organic soil properties from Visible Near-Infrared Shortwave Infrared (Vis-NIR-SWIR) spectroscopy using fractal-based feature extraction. Remote Sensing, 8(12): 1035. doi:https://doi.org/10.3390/rs8121035.
McCarty G.W, Reeves J.B, Reeves V.B, Follett R.F, Kimble J.M. 2002. Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Science Society of America Journal, 66(2): 640-646. doi:https://doi.org/10.1016/j.geoderma.2009.04.005.
Mirzaei S, Darvishi Boloorani A, Bahrami H.A, Alavipanah, S.K, Mousivand A. 2021. Moisture influence reducing on soil reflectance using EPO for organic carbon prediction. 7th International Conference on Agriculture, Environment, Urban and Rural. Tbilisi, Georgia. 16 June. https://civilica.com/doc/1256685. (In Persian).
Morellos A, Pantazi X.E, Moshou, D, Alexandridis T, Whetton R, Tziotzios G, Wiebensohn J, Bill R, Mouazen A.M. 2016. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering. doi:https://doi.org/10.1016/j.biosystemseng.2016.04.018.
Mouazen A.M, Kuang B, De Baerdemaeker J, Ramon H. 2010. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 158(1): 23-31. doi:https://doi.org/10.1016/j.geoderma.2010.03.001.
Nawar S, Abdul Munnaf M, Mouazen A.M. 2020. Machine learning based on-line prediction of soil organic carbon after removal of soil moisture effect. Remote Sensing, 12(8): 1308. https://doi.org/10.3390/rs12081308.
Nocita M, Kooistra L, Bachmann M, Müller A, Powell M, Weel S. 2011. Predictions of soil surface and topsoil organic carbon content through the use of laboratory and field spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa. Geoderma, 167: 295-302. doi:https://doi.org/10.1016/j.geoderma.2011.09.018.
Ghazi M, Bahrami H.A, Darvishi Boloorani A, Mirzaei S. 2018. Estimating the measure of the soil’s lime in dust’s centers of Tehran province by using of VINR spectroscopy and satellite images of OLI. RS & GIS for Natural Resources, 8(4): 1-16, https://www.sid.ir/en/journal/ViewPaper.aspx?id=597225 (In Persian).
Steffens M, Kohlpaintner M, Buddenbaum H. 2014. Fine spatial resolution mapping of soil organic matter quality in a Histosol profile. European Journal of Soil Science, 65(6): 827-839. doi: https://doi.org/10.1111/ejss.12182.
Tekin Y, Kuang B, Mouazen A.M. 2013. Potential of on-line visible and near infrared spectroscopy for measurement of pH for deriving variable rate lime recommendations. Sensors, 13(8): 10177-10190. doi:https://doi.org/10.3390/s130810177.
Viscarra Rossel R.A, Behrens, T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1): 46-54. doi:https://doi.org/10.1016/j.geoderma.2009.12.025.
Viscarra Rossel R.A, Hicks W.S. 2015. Soil organic carbon and its fractions estimated by visible–near infrared transfer functions. European Journal of Soil Science, 66(3): 438-450. doi:https://doi.org/10.1111/ejss.12237.
Viscarra Rossel R.A, Cattle S.R, Ortega A, Fouad Y. 2009. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma, 150(3): 253-266. doi:https://doi.org/10.1016/j.geoderma.2009.01.025.
Vohland M, Besold J, Hill J, Fründ H.C. 2011. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma, 166(1): 198-205. doi:https://doi.org/10.1016/j.geoderma.2011.08.001.
Wang Y, Wang F, Huang J, Wang X, Liu Z. 2009. Validation of artificial neural network techniques in the estimation of nitrogen concentration in rape using canopy hyperspectral reflectance data. International Journal of Remote Sensing, 30(17): 4493-4505. doi:https://doi.org/10.1080/01431160802577998.
Yang H, Li J. 2013. Predictions of soil organic carbon using laboratory-based hyperspectral data in the northern Tianshan Mountains, China. Environmental Monitoring and Assessment, 185(5): 3897-3908. doi:https://doi.org/10.1007/s10661-012-2838-z.
Yang R.M, Zhang G.L, Liu F, Lu Y.Y, Yang F, Yang F, Yang M, Zhao Y.G, Li D.C. 2016. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60: 870-878. doi:https://doi.org/10.1016/j.ecolind.2015.08.036.