استفاده از مدل ترکیبی سامانه اطلاعات جغرافیایی سه بعدی و الگوریتم کلونی مورچگان در بهینه سازی پوشش سایه درختان
الموضوعات :محسن قدس 1 , حسین آقامحمدی زنجیرآباد 2 , علیرضا وفایی نژاد 3 , سعید بهزادی 4 , علیرضا قراگوزلو 5
1 - دانشجوی دکتری تخصصی، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیار گروه حمل و نقل، دانشکده عمران، آب و محیط زیست، دانشگاه شهیدبهشتی، تهران، ایران
4 - استادیار گروه مهندسی نقشه برداری، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهیدرجایی، تهران، ایران
5 - دانشیار گروه حمل و نقل، دانشکده عمران، آب و محیطزیست، دانشگاه شهید بهشتی، تهران، ایران
الکلمات المفتاحية: روش فرا-ابتکاری کلونی مورچگان, سامانه اطلاعات جغرافیایی سه بعدی, پوشش سایه درختان,
ملخص المقالة :
پیشینه و هدف یکی از روش های کاهش جذب تشعشعات خورشیدی و جلوگیری از ایجاد جزایر حرارتی شهری، افزایش سایه توسط پوشش گیاهی است. به خصوص ایجاد سایه بر ساختمان ها که موجب خنک شدن خانه ها، کاهش مصرف انرژی و هزینه ها، افزایش ارزش خانه ها، ایجاد جلوه بصری مناسب و حس خوبی و سرزندگی می شود. هر چند از نظر اقتصادی میزان صرفهجویی رخ داده در اثر سایه و خنک شدن هوا برای یک درخت در طول عمر آن در نواحی آب و هوایی مختلف، متفاوت بوده و بستگی به نوع درخت، میزان سایه گستری آن در طول روز و در فصول مختلف سال دارد، اما اثر آن در صرفه جویی مصرف انرژی و هزینه ها قطعی است. موضوع تحقیق حاضر برنامه ریزی استراتژیک در خصوص افزایش پوشش سایه درختان در مناطق مسکونی شهری است. روشی ساده برای ایجاد سایه فراوان کاشت درختان متعدد در اطراف ساختمان ها است. اما این روش در بسیاری از مناطق که با مشکل کمبود آب مواجه اند، به دلیل هزینه های زیاد آن غیر عملی است. ضمن آن که وجود سایه های اضافی بر سطح بام ساختمان، موجب کاهش قابلیت در معرض تابش پرتوی خورشید قرار گرفتن بر سطح بام ساختمان ها و کاهش پتانسیل استفاده از پانل های خورشیدی بر سطح بام برای تولید الکتریسیته خواهد شد. اما چالش اصلی دست یابی به بیشترین مزایای سایه با استفاده از روشی است که بتواند با تعداد کمی درخت در نقاطی بهینه، پوشش سایه بیشینه بر سطح نما و پوشش سایه کمینه بر سطح بام را فراهم آورد. موضوع مکان یابی موقعیت درختان با هدف بهینه سازی پوشش سایه، یعنی بیشینه نمودن پوشش سایه بر سطح نما، درب و پنجره و کمینه نمودن پوشش سایه بر سطح بام، یک مسئله غیرقطعی سخت است و راهحل دقیق و قطعی ندارد. لذا از سیستم اطلاعات جغرافیایی سه بعدی و الگوریتم کلونی مورچه ها برای این منظور استفاده شده است. در پژوهش های گذشته شده اغلب اثرات سایه پوشش درخت بر یک ساختمان منفرد موردبررسی قرارگرفته است؛ درحالیکه در این پژوهش به جای یک ساختمان منفرد یک بلوک ساختمانی، شامل چندین ساختمان متصل به یکدیگر، موردبررسی قرار می گیرد. زیرا در اکثر شهرهای ایران، ساختمان ها به هم چسبیده و تشکیل بلوک ساختمانی را می دهند. ضمن این که در بیشتر پژوهش های پیشین، اثر پوشش سایه حداکثر دو درخت بر روی ساختمان مورد بررسی قرارگرفته است؛ در حالی که در این پژوهش اثر پوشش سایه 15 اصله درخت را بر روی بلوک ساختمانی بررسی می نماییم. در هیچیک پژوهش های انجام شده بهینه سازی پوشش سایه درختان بر سطح نمای ساختمان از روش بهینه سازی فرا-ابتکاری و ترکیب آن با GIS استفاده نشده است. در این پژوهش با رویکردی ترکیبی از GIS در یک محیط سه بعدی و روش فرا-ابتکاری ACO در مکان یابی استراتژیک تعداد مختلف درختان، با هدف بیشینه نمودن پوشش سایه درختان بر سطح نمای ساختمان ها و کمینه نمودن پوشش سایه درختان بر سطح بام استفاده می شود.مواد و روش هابرای انجام تحلیل ها دو نوع داده موردنیاز است. یکی مشخصات بلوک ساختمانی، برای مثال: ابعاد، موقعیت و اندازه نما، بام، درب و پنجره ها و دیگری مشخصات درخت (ارتفاع و موقعیت). برای مدل سازی مسئله بهینه سازی پوشش سایه درختان از GIS سه بعدی و الگوریتم ACO استفاده شده است. GIS سه بعدی قابلیت ذخیره سازی، تجزیه و تحلیل و ایجاد توپولوژی سه بعدی را فراهم نموده و ACO نیز برای خلاصه سازی شرایط دنیای واقعی در یک مسئله ریاضی استفاده شده است. برای ذخیره سازی اطلاعات مکانی و استخراج سطح پوشش، توپولوژی مکانی از GIS و قواعد مثلثاتی استفاده شده است. پس از ذخیره سازی موقعیت، ترکیب و اطلاعات توصیفی اشیا دو بعدی و سه بعدی توسط داده های توپولوژیکی، برای استخراج موقعیت سایه، ازنظر دافیه و بِکمن در 2013 استفاده شده است. سپس با توجه به نظر چرچ و ریوله مسئله مکان یابی پوشش حداکثری تعریف شده است. برای بهینه سازی مکانی سه بعدی به 3 دلیل ذیل از روش ACO استفاده می شود. دلیل اول مبتنی بر استفاده از قواعد مثلثاتی پیچیده فوق الذکر در محاسبه پوشش سایه بر روی ساختمان های مختلف و به خصوص استفاده از مدل سه بعدی پیچیده و با جزئیات کامل برای درخت و بلوک ساختمانی است. دلیل دوم مبتنی بر عدم وجود روشی قطعی برای حل این مسئله بهینه سازی با توجّه به قیود غیرخطی شامل توابع مثلثاتی و دلیل سوم مبتنی بر وجود فضای پیوسته اطراف بلوک ساختمانی است که در هر مکانی امکان قرارگیری درخت وجود دارد و لذا منجر به بی نهایت ترکیب از ترتیب چند درخت در فضای ممکن برای بررسی مسئله می گردد. جزئیات مراحل عبارتاند از؛ 1) تعریف مجموعه مکان های ممکن برای درخت بر اساس ارتفاع، قطر تاج، محوطه پیرامونی و چشم انداز بیرونی بلوک ساختمانی. 2) استفاده از روشی برای قرارگیری اولین درخت در تمام مکان های ممکن اطراف بلوک ساختمانی در طی ساعات گرم در روزهای مشخصی از فصل تابستان و محاسبه بیشترین پوشش سایه بر روی بلوک ساختمانی بر اساس وزن اجزا ساختمان. 3) حذف مکان های ممکن قرار گرفته در تاج درخت به منظور جلوگیری از همپوشانی تاج درختان و 4) تکرار مراحل 2 و 3 برای قرارگیری درختان بعدی در مکان های ممکن اطراف بلوک ساختمانی تا زمانی که تعداد درختان به تعداد درختان مورد نظر برای ایجاد سایه برسد. با توجه به اینکه بی نهایت مکان ممکن، یک مرحله سادهسازی و محدود کردن تعداد مکان های ممکن ضروری است. برای این منظور، فضای پیوسته به مجموعه مکان ممکن برای قرارگیری Ni درخت بافاصله 2 متری در راستای شمال-جنوب و شرق-غرب خلاصه شده است. ضمن آنکه به منظور استفاده از روشنایی روز در ساختمان، امکان دید به بیرون از داخل ساختمان و امکان رفت و آمد از درب ها مکان های ممکن روبروی درب ها و پنجره ها حذف شده است. برای پرهیز از ایجاد سایه غیرضروری در بام، حداقل فاصله 2 متر درختان تا ساختمان در نظر گرفته شد.نتایج و بحث برای بهینه سازی پوشش سایه درختان با استفاده از الگوریتم بهینه سازی کلونی مورچه ها از محیط متلبMATLAB استفاده شد. برای این منظور ابتدای مدل بلوک ساختمانی مورد بررسی شامل طول، عرض، ارتفاع، در قالب ساختاری تعریف شده که دارای ماتریس های مجزایی برای نمای شمالی، شرقی، جنوبی و غربی بلوک ساختمانی است. برای تعریف بام بلوک ساختمانی نیز ماتریس دیگری استفاده شد. هر عنصر از ماتریسهای مذکور معادل cm 10× 10 از سطح بلوک ساختمانی و دارای مقدار صفر است. برای مدل سازی ابعاد و محل قرارگیری درب و پنجره ها در هر نما، ساختاری دیگر شامل ماتریس های مجزا برای هر نما تعریف شده است که مقدار عناصر ماتریس در محل قرارگیری درب و پنجره ها برابر یک است. مدل درخت غالب منطقه، شامل ارتفاع و شعاع تاج درخت نیز تعریف گردید. مشخصات خورشید در منطقه مورد مطالعه، شامل آزیموت و ارتفاع خورشید در روزهای مورد مطالعه در بازه های زمانی 15 دقیقه ای از ساعت 9 تا 15 استفاده قرار گرفت. پس از قرارگیری درخت در هر یک از مکان های ممکن و حرکت خورشید، سایه ایجاد شده درختان بر هر نقطه از اجزای ساختمان، موجب تغییر مقدار عنصر ماتریس معادل آن نقطه از صفر به یک میگردد. مجموع مقادیر عناصر ماتریس، میزان سایه ایجاد شده توسط درخت را بر هریک از اجزای ساختمان را مشخص می کند. مجموع حاصل ضرب نقطه ای عناصر ماتریس درب و پنجره ها در عناصر ماتریس نما، مقدار سایه ایجاد شده بر درب و پنجره ها را مشخص می کند. برای بیشینه سازی پوشش سایه درختان بر سطح نما، درب/پنجره ها و کمینه سازی پوشش سایه بر سطح بام، تابع هدف تعریف و از الگوریتم ACO استفاده شده است. نتایج حاصل از روش ACO نشان می دهد حالت بهینه پوشش سایه درخت/درختان بر روی بلوک ساختمانی، که بیشترین سایه را بر روی نما و درب و پنجره ها و کمترین سایه را بر روی بام ایجاد نماید، بستگی زیادی به تعداد درختان و موقعیت درب و پنجره ها در نمای بلوک ساختمانی دارد. به طور کلی با افزایش تعداد درختان، میزان سایه ایجاد شده بر اجزای بلوک ساختمانی افزایش می یابد.نتیجه گیری نتایج حاصل روش ACO نشان داد که برای ساختمانی، در یک منطقه در نیمکره شمالی، درختان در شمال ساختمان تأثیری در ایجاد سایه بر اجزای ساختمان ندارند. با توجه به اینکه در مناطق خشک و گرمسیری محدودیت در کاشت درختان وجود دارد، یافتن موقعیت مناسب برای درختان نقش بسزایی در بهینه سازی پوشش سایه بر اجزای ساختمان دارد. با توجه به میزان انتقال گرمایی بالا از طریق درب و پنجره ها نسبت به نما و بام، و وزن بیشتر در نظر گرفته شده برای این اجزا در تابع هدف، یافتن موقعیت های بهینه درختان بستگی زیادی به موقعیت درب و پنجره ها در ساختمان دارد؛ تا بیشترین سایه را بر این اجزا ایجاد نمایند. برای بلوک ساختمانی با تعداد و ابعاد ساختمان های مفروض در پژوهش و با توجه به ابعاد و موقعیت درب و پنجره ها، کاشت یک درخت دریکی از موقعیت های K10، K16، K22 یا K28 که هر یک در فاصله 2 متری جنوب ساختمان و در حد وسط دو پنجره قرار دارد، بهینه ترین سایه را ایجاد می نماید. این درخت به طور میانگین از ساعت 9 تا 15 در چهار روز مورد بررسی، بر کل نما، درب/پنجرهها و بام ساختمان به ترتیب 7.48، 9.22 و 0.85 درصد سایه ایجاد می کند. در حالتی که کاشت دو درخت مدنظر باشد، بازهم دو موقعیت از موقعیت های K10، K16، K22 یا K28 بهینه ترین سایه را ایجاد می نماید. این دو درخت به طور میانگین از ساعت 9 تا 15 در چهار روز موردبررسی، بر کل نما، درب/پنجرهها و بام ساختمان به ترتیب 13.88، 18.64 و 1.69 درصد سایه ایجاد می کنند. در حالت سه درخت موقعیت های K8، K18 و K22، در حالت چهار درخت موقعیت های K14، K20، K26 و K32، در حالت پنج درخت موقعیت های K8، K14، K20، K26 و K32 بهینه ترین سایه را ایجاد می کنند. این موقعیت ها در فاصله 2 متری جنوب ساختمان قرار دارند. در حالت سه درخت به طور میانگین از ساعت 9 تا 15 در چهار روز موردبررسی، بر کل نما، درب/پنجرهها و بام ساختمان به ترتیب 21.07، 28.54 و 2.54 درصد، در حالت چهار درخت بر کل نما، درب/پنجرهها و بام ساختمان به ترتیب 24.96، 35.36 و 3.39 درصد و در حالت پنج درخت بر کل نما، درب/پنجرهها و بام ساختمان به ترتیب 33.26، 44.70 و 3.95 درصد، سایه ایجاد میشود. با کاشت پنج درخت بیش از 88 درصد نمای جنوبی و بیش از 90 درصد درب/پنجره های نمای جنوبی ساختمان تحت پوشش سایه قرار می گیرد. اما با توجه به هدف بهینه سازی سایه بر ساختمان و وزن بیشتر درب و پنجره ها، روش ACO موقعیت درختان را به گونه ای بهینه یابی کرده است که سطح بیشتری از درب و پنجرهها در معرض سایه قرار بگیرد. با توجه به اینکه در حالت پنج درخت، 90 درصد نمای جنوبی در سایه درختان قرار گرفت، در حالت شش درخت علاوه بر نمای جنوبی، نماهای شرقی و غربی نیز برای کاشت درخت در نظر گرفته شد. به طوریکه موقعیت های K8، K14، K20 و K30 در فاصله دو متری نمای جنوبی و موقعیت H2 در فاصله 2 متری نمای غربی و موقعیت H36 در فاصله 2 متری نمای شرقی برگزیده شد. این درختان به طور میانگین از ساعت 9 تا 15 در چهار روز موردبررسی، بر روی نما، درب/پنجرههای و بام به ترتیب 33.95، 42.29 و 3.64 درصد سایه ایجاد می کند.
Afshari A. 2017. A new model of urban cooling demand and heat island—application to vertical greenery systems (VGS). Energy and Buildings, 157: 204-217. doi:https://doi.org/10.1016/j.enbuild.2017.01.008.
Akbari H, Taha H. 1992. The impact of trees and white surfaces on residential heating and cooling energy use in four Canadian cities. Energy, 17(2): 141-149. doi:https://doi.org/10.1016/0360-5442(92)90063-6.
Annual reports of meteotological administration. 2019. Semnan province. www.semnanweather.ir/index.php. (In Persian(
Buchin O, Hoelscher M-T, Meier F, Nehls T, Ziegler F. 2016. Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy and Buildings, 114: 27-37. doi:https://doi.org/10.1016/j.enbuild.2015.06.038.
Calcerano F, Martinelli L. 2016. Numerical optimisation through dynamic simulation of the position of trees around a stand-alone building to reduce cooling energy consumption. Energy and Buildings, 112: 234-243. doi:https://doi.org/10.1016/j.enbuild.2015.12.023.
Church R, ReVelle C. 1974. The maximal covering location problem. In: Papers of the regional science association, vol 1. Springer-Verlag, pp 101-118.
Dorigo M, Gambardella LM. 1997. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on evolutionary computation, 1(1): 53-66. doi:https://doi.org/10.1109/4235.585892.
Duffie JA, Beckman WA. 2013. Solar engineering of thermal processes. Wiley New York. http://books.google.com/books?hl=en&lr=&id=qkaWBrOuAEgC&pgis=1.
Ellabib I, Calamai P, Basir O. 2007. Exchange strategies for multiple ant colony system. Information Sciences, 177(5): 1248-1264. doi:https://doi.org/10.1016/j.ins.2006.09.016.
Eniolu TM, Dahanayake KKC, Adegun OB, Balogun AA. 2016. Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy and Buildings, 130: 721-732. doi:https://doi.org/10.1016/j.enbuild.2016.08.087.
Fogl M, Moudrý V. 2016. Influence of vegetation canopies on solar potential in urban environments. Applied Geography, 66: 73-80. doi:https://doi.org/10.1016/j.apgeog.2015.11.011.
Gomez-Muñoz VM, Porta-Gándara M, Fernández J. 2010. Effect of tree shades in urban planning in hot-arid climatic regions. Landscape and Urban Planning, 94(3-4): 149-157. doi:https://doi.org/10.1016/j.landurbplan.2009.09.002.
Heisler GM. 1986. Energy savings with trees. Journal of Aboriculture 12 (5): 113-125, 12(5): 113-125.
Huang Y, Akbari H, Taha H, Rosenfeld AH. 1987. The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Applied Meteorology and Climatology, 26(9): 1103-1116. doi:https://doi.org/10.1175/1520-0450(1987)026<1103:TPOVIR>2.0.CO;2.
Hwang WH, Wiseman PE, Thomas VA. 2015. Tree planting configuration influences shade on residential structures in four US cities. Arboriculture & Urban Forestry, 41(4): 208-222.
Jadraque O, Jadraque E, Alegre J, Martínez G. 2010. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain). Renewable and Sustainable Energy Reviews, 14(7): 2122-2130. doi:https://doi.org/https://doi.org/10.1016/j.rser.2010.01.001.
Kim HH. 1992. Urban heat island. International Journal of Remote Sensing, 13(12): 2319-2336. doi:https://doi.org/10.1080/01431169208904271.
McPherson G, Simpson JR, Peper PJ, Maco SE, Xiao Q, Mulrean E. 2004. Desert southwest community tree guide: benefits, costs and strategic planting. Arizona Community Tree Council, Inc Phoenix, AZ http://wwwtreesearchfsfedus/pubs/47703.
Oke TR. 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455): 1-24.
Pandit R, Laband DN. 2010. Energy savings from tree shade. Ecological Economics, 69(6): 1324-1329. doi:https://doi.org/https://doi.org/10.1016/j.ecolecon.2010.01.009.
Roche LP, Yeom DJ, Ponce A. 2020. Passive cooling with a hybrid green roof for extreme climates. Energy and Buildings, 224: 110243. doi:https://doi.org/10.1016/j.enbuild.2020.110243.
Safarzadeh H, Bahadori M. 2005. Passive cooling effects of courtyards. Building and Environment, 40(1): 89-104. doi:https://doi.org/10.1016/j.buildenv.2004.04.014.
Saiz S, Kennedy C, Bass B, Pressnail K. 2006. Comparative life cycle assessment of standard and green roofs. Environmental Science & Technology, 40(13): 4312-4316. doi:https://doi.org/10.1021/es0517522.
Santamouris M. 2007. Heat island research in Europe: the state of the art. Advances in Building Energy Research, 1(1): 123-150. doi:https://doi.org/10.1080/17512549.2007.9687272.
Sawka M, Millward AA, Mckay J, Sarkovich M. 2013. Growing summer energy conservation through residential tree planting. Landscape and Urban Planning, 113: 1-9. doi:https://doi.org/10.1016/j.landurbplan.2013.01.006.
Shaviv E, Yezioro A. 1997. Analyzing mutual shading among buildings. Solar Energy, 59(1-3): 83-88. doi:https://doi.org/10.1016/S0038-092X(96)00103-X.
Simpson JR, McPherson EG. 1996. Potential of tree shade for reducing residential energy use in California. Journal of Arboriculture 22 (1): 10-18, 22(1): 10-18.
Spronken-Smith R, Oke T. 1998. The thermal regime of urban parks in two cities with different summer climates. International journal of remote sensing, 19(11): 2085-2104. doi:https://doi.org/10.1080/014311698214884.
Tan Z, Lau KK-L, Ng E. 2016. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114: 265-274. doi:https://doi.org/10.1016/j.enbuild.2015.06.031.
Wagar JA. 1984. Using vegetation to control sunlight and shade on windows. Landscape journal, 3(1): 24-35. doi:https://doi.org/10.3368/lj.3.1.24.
Wentz EA, Rode S, Li X, Tellman EM, Turner B. 2016. Impact of Homeowner Association (HOA) landscaping guidelines on residential water use. Water Resources Research, 52(5): 3373-3386. doi:https://doi.org/10.1002/2015WR018238.
Zhao Q, Wentz EA, Murray AT. 2017. Tree shade coverage optimization in an urban residential environment. Building and Environment, 115: 269-280. doi:https://doi.org/10.1016/j.buildenv.2017.01.036.
_||_Afshari A. 2017. A new model of urban cooling demand and heat island—application to vertical greenery systems (VGS). Energy and Buildings, 157: 204-217. doi:https://doi.org/10.1016/j.enbuild.2017.01.008.
Akbari H, Taha H. 1992. The impact of trees and white surfaces on residential heating and cooling energy use in four Canadian cities. Energy, 17(2): 141-149. doi:https://doi.org/10.1016/0360-5442(92)90063-6.
Annual reports of meteotological administration. 2019. Semnan province. www.semnanweather.ir/index.php. (In Persian(
Buchin O, Hoelscher M-T, Meier F, Nehls T, Ziegler F. 2016. Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy and Buildings, 114: 27-37. doi:https://doi.org/10.1016/j.enbuild.2015.06.038.
Calcerano F, Martinelli L. 2016. Numerical optimisation through dynamic simulation of the position of trees around a stand-alone building to reduce cooling energy consumption. Energy and Buildings, 112: 234-243. doi:https://doi.org/10.1016/j.enbuild.2015.12.023.
Church R, ReVelle C. 1974. The maximal covering location problem. In: Papers of the regional science association, vol 1. Springer-Verlag, pp 101-118.
Dorigo M, Gambardella LM. 1997. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on evolutionary computation, 1(1): 53-66. doi:https://doi.org/10.1109/4235.585892.
Duffie JA, Beckman WA. 2013. Solar engineering of thermal processes. Wiley New York. http://books.google.com/books?hl=en&lr=&id=qkaWBrOuAEgC&pgis=1.
Ellabib I, Calamai P, Basir O. 2007. Exchange strategies for multiple ant colony system. Information Sciences, 177(5): 1248-1264. doi:https://doi.org/10.1016/j.ins.2006.09.016.
Eniolu TM, Dahanayake KKC, Adegun OB, Balogun AA. 2016. Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy and Buildings, 130: 721-732. doi:https://doi.org/10.1016/j.enbuild.2016.08.087.
Fogl M, Moudrý V. 2016. Influence of vegetation canopies on solar potential in urban environments. Applied Geography, 66: 73-80. doi:https://doi.org/10.1016/j.apgeog.2015.11.011.
Gomez-Muñoz VM, Porta-Gándara M, Fernández J. 2010. Effect of tree shades in urban planning in hot-arid climatic regions. Landscape and Urban Planning, 94(3-4): 149-157. doi:https://doi.org/10.1016/j.landurbplan.2009.09.002.
Heisler GM. 1986. Energy savings with trees. Journal of Aboriculture 12 (5): 113-125, 12(5): 113-125.
Huang Y, Akbari H, Taha H, Rosenfeld AH. 1987. The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Applied Meteorology and Climatology, 26(9): 1103-1116. doi:https://doi.org/10.1175/1520-0450(1987)026<1103:TPOVIR>2.0.CO;2.
Hwang WH, Wiseman PE, Thomas VA. 2015. Tree planting configuration influences shade on residential structures in four US cities. Arboriculture & Urban Forestry, 41(4): 208-222.
Jadraque O, Jadraque E, Alegre J, Martínez G. 2010. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain). Renewable and Sustainable Energy Reviews, 14(7): 2122-2130. doi:https://doi.org/https://doi.org/10.1016/j.rser.2010.01.001.
Kim HH. 1992. Urban heat island. International Journal of Remote Sensing, 13(12): 2319-2336. doi:https://doi.org/10.1080/01431169208904271.
McPherson G, Simpson JR, Peper PJ, Maco SE, Xiao Q, Mulrean E. 2004. Desert southwest community tree guide: benefits, costs and strategic planting. Arizona Community Tree Council, Inc Phoenix, AZ http://wwwtreesearchfsfedus/pubs/47703.
Oke TR. 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455): 1-24.
Pandit R, Laband DN. 2010. Energy savings from tree shade. Ecological Economics, 69(6): 1324-1329. doi:https://doi.org/https://doi.org/10.1016/j.ecolecon.2010.01.009.
Roche LP, Yeom DJ, Ponce A. 2020. Passive cooling with a hybrid green roof for extreme climates. Energy and Buildings, 224: 110243. doi:https://doi.org/10.1016/j.enbuild.2020.110243.
Safarzadeh H, Bahadori M. 2005. Passive cooling effects of courtyards. Building and Environment, 40(1): 89-104. doi:https://doi.org/10.1016/j.buildenv.2004.04.014.
Saiz S, Kennedy C, Bass B, Pressnail K. 2006. Comparative life cycle assessment of standard and green roofs. Environmental Science & Technology, 40(13): 4312-4316. doi:https://doi.org/10.1021/es0517522.
Santamouris M. 2007. Heat island research in Europe: the state of the art. Advances in Building Energy Research, 1(1): 123-150. doi:https://doi.org/10.1080/17512549.2007.9687272.
Sawka M, Millward AA, Mckay J, Sarkovich M. 2013. Growing summer energy conservation through residential tree planting. Landscape and Urban Planning, 113: 1-9. doi:https://doi.org/10.1016/j.landurbplan.2013.01.006.
Shaviv E, Yezioro A. 1997. Analyzing mutual shading among buildings. Solar Energy, 59(1-3): 83-88. doi:https://doi.org/10.1016/S0038-092X(96)00103-X.
Simpson JR, McPherson EG. 1996. Potential of tree shade for reducing residential energy use in California. Journal of Arboriculture 22 (1): 10-18, 22(1): 10-18.
Spronken-Smith R, Oke T. 1998. The thermal regime of urban parks in two cities with different summer climates. International journal of remote sensing, 19(11): 2085-2104. doi:https://doi.org/10.1080/014311698214884.
Tan Z, Lau KK-L, Ng E. 2016. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114: 265-274. doi:https://doi.org/10.1016/j.enbuild.2015.06.031.
Wagar JA. 1984. Using vegetation to control sunlight and shade on windows. Landscape journal, 3(1): 24-35. doi:https://doi.org/10.3368/lj.3.1.24.
Wentz EA, Rode S, Li X, Tellman EM, Turner B. 2016. Impact of Homeowner Association (HOA) landscaping guidelines on residential water use. Water Resources Research, 52(5): 3373-3386. doi:https://doi.org/10.1002/2015WR018238.
Zhao Q, Wentz EA, Murray AT. 2017. Tree shade coverage optimization in an urban residential environment. Building and Environment, 115: 269-280. doi:https://doi.org/10.1016/j.buildenv.2017.01.036.