بهره گیری از رویکرد بوت استرپ برای مقایسه روش های مدل سازی آماری در برآورد سنجش ازدوری زی توده روی زمینی جنگل های زاگرس
الموضوعات :
1 - دکتری جنگلداری، دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس، تهران، ایران
2 - دانشیار گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس، تهران، ایران
الکلمات المفتاحية: بوت استرپ, مدل سازی آماری, زی توده روی زمینی, جنگل های زاگرس, لندست,
ملخص المقالة :
پیشینه و هدفبا توجه به اهمیت اکوسیستم های جنگل ها در پروژه های تعدیل تغییر اقلیم، روش های دقیق و کمهزینه برای برآورد زی توده روی زمینی موردنیاز است. روش های معمول مورد استفاده برای برآورد زی توده روی زمینی شامل اندازه گیری در عرصه، محاسبه زی توده با استفاده از معادلات آلومتری و استفاده از فنون سنجش از دوری است. سنجش از دور به طور گسترده برای برآورد زی توده جنگل ها در دهه های اخیر مورد استفاده قرارگرفته است. یکی از عوامل بسیار مهم در استفاده از داده های سنجش از دوری برای برآورد زی توده روی زمینی روش مدل سازی آماری مورد استفاده است. تعداد زیادی تحقیق در زمینه استفاده از روش های مدل سازی انجام شده است. به هرحال، این مطالعات با چالش های مختلفی روبرو هستند که برای مثال می توان به موارد زیر اشاره کرد: 1) هیچ روش مدل سازی به عنوان بهترین روش معرفی نشده است، 2) عملکرد این روش ها متأثر از نوع جنگل، ساختار جنگل و میزان آشفتگی های موجود است. 3) ارزیابی عملکرد و مقایسه نتایج آن ها با استفاده از آزمون نکویی برازش و روش های ارزیابی متقابل انجام گرفته است. با توجه به نقش انتخاب روش مدل سازی مناسب، مطالعه حاضر باهدف بررسی نه روش مدل سازی شامل رگرسیون خطی، مدل تجمعی تعمیم یافته، جنگل تصادفی، ماشین بردارپشتیبان، درختان رگرسیون تقویتشده، k-امین نزدیکترین همسایه، مدل پردازش گوسی و رگرسیون اسپلاین تطبیقی چندگانه با استفاده از فرآیند بوت استرپ برای برآورد زی توده روی زمینی جنگل های زاگرس با استفاده از تصویرهای لندست 8 انجام شد.مواد و روش هامطالعه حاضر در جنگل های کرمانشاه که در غرب ایران درکوه های زاگرس واقع شده است با گونه درختی غالب بلوط انجام شد. جنگل های زاگرس اغلب به صورت تنک و باز بوده و حدود 20 درصد از سطح ایران و 40 درصد از مناطق جنگلی این کشور را شامل می شود.برای اجرای این مطالعه دو منطقه جنگلی با شدت دخالتهای انسانی مختلف انتخاب شد: منطقه سرفیروزآباد با شدت تخریب بالا و منطقه جنگلی گهواره با حداقل تخریب. مختصات جغرافیایی این مناطق به ترتیب برای سرفیروزآباد و گهواره عبارتند از 33 درجه و 57 دقیقه تا 34 درجه و 4 دقیقه شمالی و 47 درجه و 3 دقیقه تا 47 درجه و 17 دقیقه شرقی، و 34 درجه 21 دقیق تا 34 درجه و 24 دقیقه شمالی و 46 درجه و 16 دقیق تا 46 درجه و 23 دقیق شرقی است. برای جمع آوری نمونه های زمینی در دو منطقه مورد مطالعه، از نقشه شاخص سطح برگ تهیه شده از تصویرهای لندست براساس مدل جهانی استفاده شد. هر دو منطقه به سه طبقه کم، متوسط و زیاد شاخص سطح برگ طبقه بندی شده و در هر طبقه موقعیت مکانی نمونه ها با استفاده از آماربرداری منظم در قالب یک شبکه 200×200 متر مشخص گردید. نمونه های زمینی به تعداد 124 نمونه مربعی شکل (63 نمونه در منطقه گهواره و 61 نمونه در منطقه سرفیروزآباد) با ابعاد 30×30 متر به اندازه پیکس ل های تصویر لندست مورد استفاده برداشت شد. مقدار زی توده روی زمینی هر درخت یا جست گروه توسط معادله آلومتری پیشنهاد شده برای گونه های بلوط جنگل های زاگرس محاسبه شد. معادله آلومتری مورد استفاده برای برآورد اندوخته زی توده هر درخت یا جست گروه از دو قطر عمود بر هم تاج درختان استفاده می کند. از جمع اندوخته زی توده تک تک درختان موجود در قطعه نمونه، مقدار قطعه زی توده در سطح قطعه نمونه بر حسب تن در هکتار محاسبه شد. منطقه های مورد مطالعه در یک فریم از تصویرهای لندست 8 به شماره گذر 167 و شماره ردیف 36 قرار داشتند. یک تصویر لندست بدون پوشش ابرناکی مربوط به تاریخ 19 مرداد سال 1394 (10 آگوست 2015) مربوط به زمانی که تاجدرختان کاملاً بسته بوده و نزدیک به زمان آماربرداری زمینی از سایت USGS دانلود شد. پیش پردازش تصویر مورد استفاده شامل تصحیحات رادیومتری و توپوگرافی به روش C اعمال شد که در مطالعات قبلی پیشنهاد شده است. برای برآورد زی توده روی زمینی در منطقه های مورد مطالعه با استفاده از سنجش از دور، تعداد 38 متغیر طیفی شامل مقدار های باندی، نسبت های ساده باندی، شاخص های گیاهی و تبدیل های خطی رایج مانند تسلدکپ و آنالیز مولفه های اصلی از تصویر لندست 8 مورد استفاده استخراج شدند.بهطورکلی کارایی 9 روش مدل سازی آماری مختلف شامل روش های پارامتری (رگرسیون خطی)، نیمه پارامتری (مدل جمعی تعمیم یافته) و ناپارامتری (جنگل تصادفی، ماشین بردار پشتیبان، k-امین نزدیک ترین همسایه، درختان رگرسیون تقویت شده، رگرسیون اسپلاین تطبیقی چندمتغیره، کوبیست و مدل پردازش گوسی) برای برآورد زی توده روی زمینی مورد مقایسه قرار گرفت. ارزیابی مدل ها با استفاده از روش fold-10 و با 1000 مرتبه تکرار و با محاسبه دو آماره ضریب تبیین و جذر میانگین مربعات خطا انجام گرفت. این تعداد اطمینان از پایداری نتایج را تامین میکند.نتایج و بحثمشخصه های آماری اندازه گیری شده از قطعه نمونه های زمینی نشان داد که میانگین زی توده روی زمینی برای منطقه های سرفیروزآباد و گهواره به ترتیب 12.6 و 20.5 تن در هکتار است. تجزیه واریانس نشان داد که اختلاف معنی داری در سطح 0.001 برای مشخصه های ضریب تبیین و جذر میانگین مربعات خطای محاسبه شده برای 1000 مرتبه تکرار توسط fold-10 وجود دارد. روش مدل سازی کوبیست در منطقه سرفیروزآباد با میانگین ضریب تبیین محاسبه شده 0.61 نتایج بهتری نسبت به سایر روش ها ارائه کرد. این نتایج برای منطقه گهواره بیانگر کارایی بهتر روش های رگرسیون خطی، مدل جمعی تعمیم یافته و k-امین نزدیکتریین همسایه با میانگین ضریب تبیین 0.87 بود. مقایسه های روش های مختلف مدل سازی در مورد جذرمیانگین مربعات خطای برآوردها با استفاده از آزمون تکی Tukey نشان داد که در منطقه سرفیروزآباد روش کوبیست با مقدار میانگین 3.3 تن در هکتار و روش های k-امین نزدیکترین همسایه و جنگل تصادفی با میانگین 5.8 تن در هکتار اختلاف معنی داری با سایر روش ها داشت. به طورکلی، نتایج این تحقیق بیانگر کارایی مناسب تصویر لندست 8 در برآورد زی توده روی زمینی جنگل های زاگرس است. این موضوع می تواند به دلیل مقدار کم زی توده در منطقه های مورد بررسی و نرسیدن آن ها به نقطه اشباع به عنوان یکی از چالش های استفاده از تصویرهای نوری مانند لندست باشد. نتایج دیگر این تحقیق ارزیابی اثر روش مدل سازی برای افزایش صحت برآورد سنجش از دوری زی توده روی زمینی است. برخلاف نتایج پژوهشهای قبلی، رگرسیون خطی نتایج بهتری نسبت به روش های ناپارامتری ارائه کرد که دلیل آن می تواند وجود رابطه خطی زی توده روی زمینی و متغیرهای طیفی استخراج شده از تصویرهای لندست باشد. در بین متغیرهای طیفی مختلفی که استفاده شد مقدارهای باند قرمز، مادون قرمز نزدیک و مادون قرمز با طول موج کوتاه 1 و 2 به عنوان متغیر نهایی در اغلب روش های مدل سازی استفاده شدند.نتیجه گیری در این تحقیق، کارایی روش های مختلف مدل سازی را در برآورد زی توده روی زمینی با استفاده از تصویرهای لندست مورد بررسی قرار گرفت. برآوردهای زی توده با استفاده از 9 روش پارامتری، نیمه پارامتری و ناپارامتری و با استفاده از ارزیابی متقابل fold-10و با 1000 مرتبه تکرار مورد مقایسه قرار گرفتند. نتایج بیانگر قابلیت خوب تصویرهای لندست برای برآورد زی توده روی زمینی جنگل های بلوط زاگرس با هزینه کم است. برآورد زی توده در منطقه جنگلی گهواره با دست خوردگی کمتر صحت بالاتری نسبت به منطقه جنگلی سرفیروزآباد با تخریب بالاتر داشت.
Aghababaie M, Ebrahimi A, Tahmasebi P. 2018. Comparison vegetation indices and tasseled cap transformation for estimates of soil organic carbon using Landsat-8 OLI images in a semi-steppe rangelands. Journal of RS and GIS for Natural Resources, 9(3): 58-59. (In Persian)
Calvao T, Palmeirim J. 2004. Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour. International Journal of Remote Sensing, 25(16): 3113-3126. doi:https://doi.org/10.1080/01431160310001654978.
Castillo JAA, Apan AA, Maraseni TN, Salmo SG. 2017. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134: 70-85. doi:https://doi.org/10.1016/j.isprsjprs.2017.10.016.
Dai L, Jia J, Yu D, Lewis BJ, Zhou L, Zhou W, Zhao W, Jiang L. 2013. Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China. Forest Ecology and Management, 300: 106-116. doi:https://doi.org/10.1016/j.foreco.2012.06.046.
Domingo D, Lamelas MT, Montealegre AL, García-Martín A, De la Riva J. 2018. Estimation of total biomass in aleppo pine forest stands applying parametric and nonparametric methods to low-density airborne laser scanning data. Forests, 9(4): 158. doi:https://doi.org/10.3390/f9040158.
Du H, Cui R, Zhou G, Shi Y, Xu X, Fan W, Lü Y. 2010. The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI. Acta Ecologica Sinica, 30(5): 257-263. doi:https://doi.org/10.1016/j.chnaes.2010.08.005.
Dube T, Mutanga O. 2015. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 36-46. doi:https://doi.org/10.1016/j.isprsjprs.2014.11.001.
Eisfelder C, Kuenzer C, Dech S. 2012. Derivation of biomass information for semi-arid areas using remote-sensing data. International Journal of Remote Sensing, 33(9): 2937-2984. doi:https://doi.org/10.1080/01431161.2011.620034.
Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B. 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154: 102-114. doi:https://doi.org/10.1016/j.rse.2014.07.028.
Fernández-Manso O, Fernández-Manso A, Quintano C. 2014. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images. International Journal of Applied Earth Observation and Geoinformation, 31: 45-56. doi:https://doi.org/10.1016/j.jag.2014.03.005.
Fu L, Zhao Y, Xu Z, Wu B. 2015. Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes. Journal of Soils and Sediments, 15(2): 249-259. doi:10.1007/s11368-014-1050-x.
Gao Y, Lu D, Li G, Wang G, Chen Q, Liu L, Li D. 2018. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sensing, 10(4): 627. doi:https://doi.org/10.3390/rs10040627.
Gasparri NI, Parmuchi MG, Bono J, Karszenbaum H, Montenegro CL. 2010. Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina. Journal of Arid Environments, 74(10): 1262-1270. doi:https://doi.org/10.1016/j.jaridenv.2010.04.007.
Gizachew B, Solberg S, Næsset E, Gobakken T, Bollandsås OM, Breidenbach J, Zahabu E, Mauya EW. 2016. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon balance and management, 11(1): 13. doi:https://doi.org/10.1186/s13021-016-0055-8.
Görgens EB, Montaghi A, Rodriguez LCE. 2015. A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics. Computers and Electronics in Agriculture, 116: 221-227. doi:https://doi.org/10.1016/j.compag.2015.07.004.
Huffman T, Liu J, McGovern M, McConkey B, Martin T. 2015. Carbon stock and change from woody biomass on Canada’s cropland between 1990 and 2000. Agriculture, Ecosystems & Environment, 205: 102-111. doi:https://doi.org/10.1016/j.agee.2014.10.009.
Iranmanesh Y. 2013. Assessment on biomass estimation methods and carbon sequestration of Quercus brantii Lindl. in Chaharmahal & Bakhtiari Forests. PhD Thesis, Tarbiat Modares University, 106 pp, (In Persian)
Karlson M, Ostwald M, Reese H, Sanou J, Tankoano B, Mattsson E. 2015. Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using Landsat 8 and random forest. Remote Sensing, 7(8): 10017-10041. doi:https://doi.org/10.3390/rs70810017.
Krahwinkler P, Rossman J. 2011. Using decision tree based multiclass support vector machines for forest mapping. In: Lena Halounová EE (ed) IEEE Int. Geoscience and Remote Sensing Symp., Vancouver, Canada. pp 307-318.
Kwak D-A, Lee W-K, Cho H-K, Lee S-H, Son Y, Kafatos M, Kim S-R. 2010. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. Journal of Plant Research, 123(4): 421-432. doi:10.1007/s10265-010-0310-0.
Latifi H, Fassnacht F, Koch B. 2012. Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote Sensing of Environment, 121: 10-25. doi:https://doi.org/10.1016/j.rse.2012.01.015.
McRoberts RE, Magnussen S, Tomppo EO, Chirici G. 2011. Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data. Remote Sensing of Environment, 115(12): 3165-3174. doi:https://doi.org/10.1016/j.rse.2011.07.002.
Nolè A, Law B, Magnani F, Matteucci G, Ferrara A, Ripullone F, Borghetti M. 2009. Application of the 3-PGS model to assess carbon accumulation in forest ecosystems at a regional level. Canadian Journal of Forest Research, 39(9): 1647-1661. doi:https://doi.org/10.1139/X09-077.
Noorian N, Shataee S, Mohamadi J. 2019. Evaluation of RapidEye satellite data for estimation some quantitative structure variables in the Caspian forests of Gorgan region. Journal of RS and GIS for Natural Resources, 9(4): 1-16. (In Persian)
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG. 2011. A large and persistent carbon sink in the world’s forests. Science, 333(6045): 988-993. doi:https://doi.org/10.1126/science.1201609.
Powell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL. 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114(5): 1053-1068. doi:https://doi.org/10.1016/j.rse.2009.12.018.
Rajashekar G, Fararoda R, Reddy RS, Jha CS, Ganeshaiah KN, Singh JS, Dadhwal VK. 2018. Spatial distribution of forest biomass carbon (Above and below ground) in Indian forests. Ecological Indicators, 85: 742-752. doi:https://doi.org/10.1016/j.ecolind.2017.11.024.
Riaño D, Chuvieco E, Salas J, Aguado I. 2003. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003). IEEE Transactions on Geoscience and Remote Sensing, 41(5): 1056-1061. doi:https://doi.org/10.1109/TGRS.2003.811693.
Safari A, Sohrabi H. 2019. The effect of digital preprocessing and modeling method on an estimation of aboveground carbon stock of Zagros forests using Landsat 8 imagery. Journal of RS and GIS for Natural Resources, 9(4): 73-89. (In Persian)
Safari A, Sohrabi H, Powell SL. 2018. Comparison of satellite-based estimates of aboveground biomass in coppice oak forests using parametric, semiparametric, and nonparametric modeling methods. Journal of Applied Remote Sensing, 12(4): 046026. doi:https://doi.org/10.1117/1.JRS.12.046026.
Sagheb-Talebi K, Pourhashemi M, Sajedi T. 2014. Forests of Iran. The Netherlands: Springer Netherlands, 152 pp. https://doi.org/10.1007/978-94-007-7371-4.
Sarker LR, Nichol JE. 2011. Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sensing of Environment, 115(4): 968-977. doi:https://doi.org/10.1016/j.rse.2010.11.010.
Shao Z, Zhang L. 2016. Estimating forest aboveground biomass by combining optical and SAR data: A case study in Genhe, Inner Mongolia, China. Sensors, 16(6): 834. doi:https://doi.org/10.3390/s16060834.
Wang X, Shao G, Chen H, Lewis BJ, Qi G, Yu D, Zhou L, Dai L. 2013. An Application of Remote Sensing Data in Mapping Landscape-Level Forest Biomass for Monitoring the Effectiveness of Forest Policies in Northeastern China. Environmental Management, 52(3): 612-620. doi:10.1007/s00267-013-0089-6.
Zhao K, Suarez JC, Garcia M, Hu T, Wang C, Londo A. 2018. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sensing of Environment, 204: 883-897. doi:https://doi.org/10.1016/j.rse.2017.09.007.
Zhao P, Lu D, Wang G, Wu C, Huang Y, Yu S. 2016. Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sensing, 8(6): 469. doi:https://doi.org/10.3390/rs8060469.
Zhu X, Liu D. 2015. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 102: 222-231. doi:https://doi.org/10.1016/j.isprsjprs.2014.08.014.
Aghababaie M, Ebrahimi A, Tahmasebi P. 2018. Comparison vegetation indices and tasseled cap transformation for estimates of soil organic carbon using Landsat-8 OLI images in a semi-steppe rangelands. Journal of RS and GIS for Natural Resources, 9(3): 58-59. (In Persian)
Calvao T, Palmeirim J. 2004. Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour. International Journal of Remote Sensing, 25(16): 3113-3126. doi:https://doi.org/10.1080/01431160310001654978.
Castillo JAA, Apan AA, Maraseni TN, Salmo SG. 2017. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134: 70-85. doi:https://doi.org/10.1016/j.isprsjprs.2017.10.016.
Dai L, Jia J, Yu D, Lewis BJ, Zhou L, Zhou W, Zhao W, Jiang L. 2013. Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China. Forest Ecology and Management, 300: 106-116. doi:https://doi.org/10.1016/j.foreco.2012.06.046.
Domingo D, Lamelas MT, Montealegre AL, García-Martín A, De la Riva J. 2018. Estimation of total biomass in aleppo pine forest stands applying parametric and nonparametric methods to low-density airborne laser scanning data. Forests, 9(4): 158. doi:https://doi.org/10.3390/f9040158.
Du H, Cui R, Zhou G, Shi Y, Xu X, Fan W, Lü Y. 2010. The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI. Acta Ecologica Sinica, 30(5): 257-263. doi:https://doi.org/10.1016/j.chnaes.2010.08.005.
Dube T, Mutanga O. 2015. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 36-46. doi:https://doi.org/10.1016/j.isprsjprs.2014.11.001.
Eisfelder C, Kuenzer C, Dech S. 2012. Derivation of biomass information for semi-arid areas using remote-sensing data. International Journal of Remote Sensing, 33(9): 2937-2984. doi:https://doi.org/10.1080/01431161.2011.620034.
Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B. 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154: 102-114. doi:https://doi.org/10.1016/j.rse.2014.07.028.
Fernández-Manso O, Fernández-Manso A, Quintano C. 2014. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images. International Journal of Applied Earth Observation and Geoinformation, 31: 45-56. doi:https://doi.org/10.1016/j.jag.2014.03.005.
Fu L, Zhao Y, Xu Z, Wu B. 2015. Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes. Journal of Soils and Sediments, 15(2): 249-259. doi:10.1007/s11368-014-1050-x.
Gao Y, Lu D, Li G, Wang G, Chen Q, Liu L, Li D. 2018. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sensing, 10(4): 627. doi:https://doi.org/10.3390/rs10040627.
Gasparri NI, Parmuchi MG, Bono J, Karszenbaum H, Montenegro CL. 2010. Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina. Journal of Arid Environments, 74(10): 1262-1270. doi:https://doi.org/10.1016/j.jaridenv.2010.04.007.
Gizachew B, Solberg S, Næsset E, Gobakken T, Bollandsås OM, Breidenbach J, Zahabu E, Mauya EW. 2016. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon balance and management, 11(1): 13. doi:https://doi.org/10.1186/s13021-016-0055-8.
Görgens EB, Montaghi A, Rodriguez LCE. 2015. A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics. Computers and Electronics in Agriculture, 116: 221-227. doi:https://doi.org/10.1016/j.compag.2015.07.004.
Huffman T, Liu J, McGovern M, McConkey B, Martin T. 2015. Carbon stock and change from woody biomass on Canada’s cropland between 1990 and 2000. Agriculture, Ecosystems & Environment, 205: 102-111. doi:https://doi.org/10.1016/j.agee.2014.10.009.
Iranmanesh Y. 2013. Assessment on biomass estimation methods and carbon sequestration of Quercus brantii Lindl. in Chaharmahal & Bakhtiari Forests. PhD Thesis, Tarbiat Modares University, 106 pp, (In Persian)
Karlson M, Ostwald M, Reese H, Sanou J, Tankoano B, Mattsson E. 2015. Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using Landsat 8 and random forest. Remote Sensing, 7(8): 10017-10041. doi:https://doi.org/10.3390/rs70810017.
Krahwinkler P, Rossman J. 2011. Using decision tree based multiclass support vector machines for forest mapping. In: Lena Halounová EE (ed) IEEE Int. Geoscience and Remote Sensing Symp., Vancouver, Canada. pp 307-318.
Kwak D-A, Lee W-K, Cho H-K, Lee S-H, Son Y, Kafatos M, Kim S-R. 2010. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. Journal of Plant Research, 123(4): 421-432. doi:10.1007/s10265-010-0310-0.
Latifi H, Fassnacht F, Koch B. 2012. Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote Sensing of Environment, 121: 10-25. doi:https://doi.org/10.1016/j.rse.2012.01.015.
McRoberts RE, Magnussen S, Tomppo EO, Chirici G. 2011. Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data. Remote Sensing of Environment, 115(12): 3165-3174. doi:https://doi.org/10.1016/j.rse.2011.07.002.
Nolè A, Law B, Magnani F, Matteucci G, Ferrara A, Ripullone F, Borghetti M. 2009. Application of the 3-PGS model to assess carbon accumulation in forest ecosystems at a regional level. Canadian Journal of Forest Research, 39(9): 1647-1661. doi:https://doi.org/10.1139/X09-077.
Noorian N, Shataee S, Mohamadi J. 2019. Evaluation of RapidEye satellite data for estimation some quantitative structure variables in the Caspian forests of Gorgan region. Journal of RS and GIS for Natural Resources, 9(4): 1-16. (In Persian)
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG. 2011. A large and persistent carbon sink in the world’s forests. Science, 333(6045): 988-993. doi:https://doi.org/10.1126/science.1201609.
Powell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL. 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114(5): 1053-1068. doi:https://doi.org/10.1016/j.rse.2009.12.018.
Rajashekar G, Fararoda R, Reddy RS, Jha CS, Ganeshaiah KN, Singh JS, Dadhwal VK. 2018. Spatial distribution of forest biomass carbon (Above and below ground) in Indian forests. Ecological Indicators, 85: 742-752. doi:https://doi.org/10.1016/j.ecolind.2017.11.024.
Riaño D, Chuvieco E, Salas J, Aguado I. 2003. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003). IEEE Transactions on Geoscience and Remote Sensing, 41(5): 1056-1061. doi:https://doi.org/10.1109/TGRS.2003.811693.
Safari A, Sohrabi H. 2019. The effect of digital preprocessing and modeling method on an estimation of aboveground carbon stock of Zagros forests using Landsat 8 imagery. Journal of RS and GIS for Natural Resources, 9(4): 73-89. (In Persian)
Safari A, Sohrabi H, Powell SL. 2018. Comparison of satellite-based estimates of aboveground biomass in coppice oak forests using parametric, semiparametric, and nonparametric modeling methods. Journal of Applied Remote Sensing, 12(4): 046026. doi:https://doi.org/10.1117/1.JRS.12.046026.
Sagheb-Talebi K, Pourhashemi M, Sajedi T. 2014. Forests of Iran. The Netherlands: Springer Netherlands, 152 pp. https://doi.org/10.1007/978-94-007-7371-4.
Sarker LR, Nichol JE. 2011. Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sensing of Environment, 115(4): 968-977. doi:https://doi.org/10.1016/j.rse.2010.11.010.
Shao Z, Zhang L. 2016. Estimating forest aboveground biomass by combining optical and SAR data: A case study in Genhe, Inner Mongolia, China. Sensors, 16(6): 834. doi:https://doi.org/10.3390/s16060834.
Wang X, Shao G, Chen H, Lewis BJ, Qi G, Yu D, Zhou L, Dai L. 2013. An Application of Remote Sensing Data in Mapping Landscape-Level Forest Biomass for Monitoring the Effectiveness of Forest Policies in Northeastern China. Environmental Management, 52(3): 612-620. doi:10.1007/s00267-013-0089-6.
Zhao K, Suarez JC, Garcia M, Hu T, Wang C, Londo A. 2018. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sensing of Environment, 204: 883-897. doi:https://doi.org/10.1016/j.rse.2017.09.007.
Zhao P, Lu D, Wang G, Wu C, Huang Y, Yu S. 2016. Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sensing, 8(6): 469. doi:https://doi.org/10.3390/rs8060469.
Zhu X, Liu D. 2015. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 102: 222-231. doi:https://doi.org/10.1016/j.isprsjprs.2014.08.014.