تخمین دمای سطح اراضی اردبیل با استفاده از تصاویر لندست و ارزیابی دقت روش های برآورد دمای سطح زمین با داده های میدانی
الموضوعات :حسین فکرت 1 , صیاد اصغری سراسکانرود 2 , سید کاظم علوی پناه 3
1 - دانشجوی کارشناسی ارشد سنجشازدور و GIS، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی، اردبیل، ایران
2 - دانشیار گروه جغرافیای طبیعی، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی، اردبیل، ایران
3 - استاد گروه سنجشازدور و GIS، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران
الکلمات المفتاحية: دمای سطح زمین, دماسنج دیجیتالی, گسیلمندی, اردبیل,
ملخص المقالة :
پیشینه و هدف در طول دو دهه اخیر نیاز شدید به اطلاعات دمای سطح زمین جهت مطالعات محیطی و فعالیت های مدیریتی و برنامه ریزی، برآورد دمای سطح زمین را به یکی از موضوعات مهم علمی تبدیل کرده است. از سویی دیگر روش های مختلفی جهت تخمین دمای سطح زمین ارائه شده است که هرکدام نتایج متفاوتی را برای مناطق مختلف در پی داشته است. در این پژوهش الگوریتم هایی که در مطالعات مختلف هرکدام نتایج قابل قبولی داشته، انتخاب و مورد ارزیابی قرارگرفته است. در حوزه مطالعات حرارتی آنچه بهعنوان یک نقص اساسی در پایش دمای سطح زمین به شمار میآید، نبود ایستگاه های هواشناسی کافی جهت آگاهی از مقادیر دمایی در نقاط فاقد ایستگاه و محدودیت اطلاعاتی در تهیه داده های دمایی به خصوص برای مناطق وسیع است. منطقه موردمطالعه نیز با این کمبود رو به رو است و این محدودیت، اهمیت موضوع انتخاب شده برای این پژوهش جهت تخمین دمای سطح زمین با استفاده از فناوری سنجشازدور را بیشتر نمایان می سازد. هدف از این تحقیق، تخمین دمای سطح شهرستان اردبیل و ارزیابی دقت چهار الگوریتم تک کاناله، تک پنجره بهبودیافته، رابطه معکوس تابع پلانک و معادله انتقال تابش، مقایسه دقت دو ماهواره لندست 5 و لندست 8 در برآورد دمای سطح زمین.مواد و روش هادر این پژوهش از سه نوع داده استفادهشده است؛ تصاویر ماهواره لندست 5 و 8، داده های دو ایستگاه هواشناسی، و داده های زمینی برداشتشده با دماسنج دیجیتالی. تصاویر مورداستفاده از دو ماهواره لندست 5 و لندست 8 بافاصله زمانی 19 ساله انتخاب شده است. داده های هواشناسی مورداستفاده نیز از دو ایستگاه سینوپتیک موجود در محدوده موردمطالعه اخذ گردید. علاوه بر دمای سطح زمین، داده های رطوبت نسبی، حداقل دما و حداکثر دمای 24 ساعت نیز در دو تاریخ مدنظر اخذ گردید، همچنین دونقطه از منطقه موردمطالعه انتخاب و دمای سطح زمین در موقعیت این دو ایستگاه همزمان با عبور ماهواره با استفاده از دو دماسنج دیجیتالی ثبت شد. جهت مدلسازی تابش و میزان انتقال اتمسفری از نرمافزار محاسبهگر تحت وب MODTRAN استفادهشده است. توان تشعشعی با دو روش گسیلمندی بر اساس شاخص NDVI و گسیلمندی بر اساس حدآستانه گذاری NDVI و دمای سطح زمین با چهار الگوریتم تک کانال، تک پنجره بهبودیافته، رابطه معکوس تابع پلانک و معادله انتقال تابشی با استفاده از باند 6 لندست 5 و باند 10 لندست 8 در نرم افزارMATLAB برای دو سال 2000 و 2019 کدنویسی گردید. درنهایت دقت الگوریتم ها با استفاده از داده های دمای سطح ایستگاه سینوپتیک و نمونه برداری میدانی مورد ارزیابی قرار گرفت.نتایج و بحثنتایج نشان داد که برای سه الگوریتم تک کانال، رابطه معکوس تابع پلانک و RTE، روش اول گسیلمندی و برای الگوریتم تک پنجره بهبودیافته روش دوم گسیلمندی از دقت بالاتری برخوردار بوده است. داده های دمای سطح اخذ شده از ایستگاه های هواشناسی در سال 2000 ازلحاظ زمانی 12 دقیقه اختلاف و برای سال 2019 اختلاف 4 دقیقه ای بازمان عبور ماهواره دارد. ایستگاه اول هواشناسی تا حدودی در محدوده شهری واقعشده است. نتایج نشان داد که مهمترین عامل بیشتر بودن اختلاف ایستگاه اول با LST برآورد شده در مقایسه با ایستگاه دوم همین عامل باشد، چراکه ناهمگونی پیکسل ها و تغییرات زیاد سطوح در محدوده شهری باعث تداخل ارزش پیکسل ها و به دنبال آن احتمال بروز خطا در برآورد دمای سطح در محدوده انسان ساز شهری را بالا می برد. برای ایستگاه زمینی نیز دونقطه با محیطی همگن و خارج از محدوده شهری با کاربری کشاورزی (یونجه) و کاربری بایر که محصول آن برداشت شده بود، انتخاب و دمای سطح آنها همزمان با عبور ماهواره اندازه گیری شد. نتایج خروجی تخمین دمای سطح زمین با دو ایستگاه سینوپتیک و دو ایستگاه زمینی مورد مقایسه و ارزیابی قرار گرفت. در هر دو تاریخ الگوریتم تک کانال کمترین اختلاف را با ایستگاه های ثبت دما نشان داد.نتیجه گیری در این پژوهش با استفاده از تصاویر ماهواره لندست 5 و لندست 8 چهار الگوریتم برآورد دمای سطح زمین شامل روش های تک کانال، تک پنجره بهبودیافته، رابطه معکوس تابع پلانک و ربطه انتقال تابش کدنویسی و نقشه های دمای سطح زمین شهرستان اردبیل برای دو سال 2000 و 2019 در محیط نرم افزار متلب کدنویسی و استخراج گردید. باند 6 ماهواره لندست 5 برای سال 2000 و از باند 10 ماهواره لندست 8 به دلیل مقدار نویز کمتر نسبت به باند 11 و نزدیکی به مقدار 9.66 که بیشترین تابش زمین برای سال 2019 استفاده شد. مقایسه نقشه های دمای سطح حاصل از الگوریتم ها با ایستگاه های سینوپتیک و زمینی نشان داد که در هر دو سال 2000 و 2019 الگوریتم تک کانال دقت بیشتری نسبت به بقیه روش ها داشته است. مقایسه نتایج روش تک کانال، نشان از اختلاف 2.5+ و 2- با ایستگاه های 1 و 2 برای سال 2000 و اختلاف دمای 1.3+، 0.9+، 1- و 0.9- به ترتیب با ایستگاه های 1، 2، 3 و 4 برای سال 2019 را نشان می دهد. استفاده مستقیم از ضرایب انتقالپذیری اتمسفر در فرآیند روش تک کانال، در بالا بودن دقت این روش مؤثر بوده است. ازنظر دقت بعد از الگوریتم تک کانال، به ترتیب روش تک پنجره بهبودیافته، الگوریتم RTE و درنهایت الگوریتم رابطه معکوس تابع پلانک قرار گرفتند. نتایج مقایسه خروجی هر چهار الگوریتم با داده های ایستگاه های 1، 2، 3 و 4، نشان از دقت بالاتر ایستگاه های زمینی برداشتشده با دماسنج دیجیتالی نسبت به داده های ایستگاه های هواشناسی دارد، ازجمله دلایل آن می توان به قرارگیری ایستگاه های هواشناسی (به خصوص Station_1) در محدوده شهری با توجه به ناهمگن بودن محیط شهری و امکان تداخل پیکسلی و تداخل دمایی کاربری ها اشاره کرد، درحالیکه ایستگاه های زمینی از محدوده خارج از شهر و از محیطی با پیکسل های همگن (بایر و کشاورزی) انتخاب گردید. همچنین نتایج هر چهار الگوریتم مستخرج از تصویر لندست 8 در مقایسه با نتایج چهار الگوریتم حاصله از تصویر لندست 5، دقت بیشتری را نشان می دهد و با توجه به بهبود توان تفکیک مکانی سنجنده TIRS نسبت به TM، دقت بیشتر خروجی های سنجنده TIRS قابل پیش بینی بود.
Asgarzadeh P, Darvishi Boloorani A, Bahrami H, Hamzeh S. 2016. Comparison between land surface temperature estimation in single and multi-channel method using LandSat images 8. Journal of RS and GIS for Natural Resources (Journal of Applied RS & GIS Techniques in Natural Resource Science), 7(3): 18-29. (In Persian).
Asghari SS, Emami H. 2018. Monitoring the land surface temperature and examining the relationship between land use and land surface temperature using from OLI and ETM+ sensor images, (Case study: Ardabil city ). Journal of Geographical Sciences, 19(53): 195-215. (In Persian). doi:https://doi.org/10.29252/jgs.19.53.195.
Barsi JA, Barker JL, Schott JR. 2003. An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477). In., pp 21-25 July 2003, vol. 2005: 3014-3016 p.
Berk A, Conforti P, Kennett R, Perkins T, Hawes F, Van Den Bosch J. 2014. MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code. In: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, pp 1-4. https://doi.org/10.1109/WHISPERS.2014.8077573.
Bernstein LS, Adler-Golden SM, Sundberg RL, Levine RY, Perkins TC, Berk A, Ratkowski AJ, Felde G, Hoke ML. 2005. Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi-and hyperspectral imagery. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. International Society for Optics and Photonics, pp 668-678. https://doi.org/610.1117/1112.603359.
Carlson TN, Ripley DA. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3): 241-252. doi:https://doi.org/10.1016/S0034-4257(97)00104-1.
Cristóbal J, Jiménez-Muñoz JC, Prakash A, Mattar C, Skoković D, Sobrino JA. 2018. An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band. Remote Sensing, 10(3): 431. doi:https://doi.org/10.3390/rs10030431.
Danodia A, Nikam R, Kumar S, Patel N. 2017. Land surface temperature retrieval by radiative transfer equation and single channel algorithms using landsat-8 satellite data. Indian Institute of Remote Sensing-ISRO: 1-7.
Feizizadeh B, Didehban K, Gholamnia K. 2016. Extraction of Land Surface Temperature (LST) based on landsat satellite images and split window algorithm Study area: Mahabad Catchment. Scientific-Research Quarterly of Geographical Data (SEPEHR), 25(98): 171-181. (In Persian).
García-Santos V, Cuxart J, Martínez-Villagrasa D, Jiménez MA, Simó G. 2018. Comparison of three methods for estimating land surface temperature from landsat 8-tirs sensor data. Remote Sensing, 10(9): 1450. doi:https://doi.org/10.3390/rs10091450.
Isaya Ndossi M, Avdan U. 2016. Application of open source coding technologies in the production of land surface temperature (LST) maps from Landsat: a PyQGIS plugin. Remote sensing, 8(5): 413. doi:https://doi.org/10.3390/rs8050413.
Jiménez‐Muñoz JC, Sobrino JA. 2003. A generalized single‐channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22). doi:https://doi.org/10.1029/2003JD003480.
Li Z-L, Tang B-H, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131: 14-37. doi:https://doi.org/10.1016/j.rse.2012.12.008.
Ndossi MI, Avdan U. 2016. Inversion of land surface temperature (LST) using Terra ASTER data: a comparison of three algorithms. Remote Sensing, 8(12): 993. doi:https://doi.org/10.3390/rs8120993.
Parastatidis D, Mitraka Z, Chrysoulakis N, Abrams M. 2017. Online global land surface temperature estimation from Landsat. Remote sensing, 9(12): 1208. doi:https://doi.org/10.3390/rs9121208.
Rubio E, Caselles V, Badenas C. 1997. Emissivity measurements of several soils and vegetation types in the 8–14, μm Wave band: Analysis of two field methods. Remote Sensing of Environment, 59(3): 490-521. doi:https://doi.org/10.1016/S0034-4257(96)00123-X.
Sahana M, Dutta S, Sajjad H. 2019. Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. International Journal of Urban Sciences, 23(2): 205-225. doi:https://doi.org/10.1080/12265934.2018.1488604.
Sajib MQU, Wang T. 2020. Estimation of Land Surface Temperature in an Agricultural Region of Bangladesh from Landsat 8: Intercomparison of Four Algorithms. Sensors, 20(6): 1778. doi:https://doi.org/10.3390/s20061778.
Sinha S, Pandey PC, Sharma LK, Nathawat MS, Kumar P, Kanga S. 2014. Remote estimation of land surface temperature for different LULC features of a moist deciduous tropical forest region. In: Srivastava PK, Mukherjee S, Gupta M, Islam T (eds) Remote Sensing Applications in Environmental Research. Springer International Publishing, Cham, pp 57-68. https://doi.org/10.1007/1978-1003-1319-05906-05908_05904.
Sobrino J, Raissouni N. 2000. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. International journal of remote sensing, 21(2): 353-366. doi:https://doi.org/10.1080/014311600210876.
Sobrino JA, Jiménez-Muñoz JC, Sòria G, Romaguera M, Guanter L, Moreno J, Plaza A, Martínez P. 2008. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2): 316-327. doi: https://doi.org/10.1109/TGRS.2007.904834.
Sobrino JA, Oltra-Carrió R, Jiménez-Muñoz JC, Julien Y, Sòria G, Franch B, Mattar C. 2012. Emissivity mapping over urban areas using a classification-based approach: Application to the Dual-use European Security IR Experiment (DESIREX). International Journal of Applied Earth Observation and Geoinformation, 18: 141-147. doi:https://doi.org/10.1016/j.jag.2012.01.022.
Srivastava PK, Han D, Rico-Ramirez MA, Bray M, Islam T, Gupta M, Dai Q. 2014. Estimation of land surface temperature from atmospherically corrected LANDSAT TM image using 6S and NCEP global reanalysis product. Environmental Earth Sciences, 72(12): 5183-5196. doi:10.1007/s12665-014-3388-1.
USGS. 2016. Landsat 8 (L8) data users handbook. Landsat Science Official Website.
USGS. 2014. USGS earthexplorer. Retrieved from http://earthexplorer.usgs.gov/.
Vlassova L, Perez-Cabello F, Nieto H, Martín P, Riaño D, De La Riva J. 2014. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sensing, 6(5): 4345-4368. doi:https://doi.org/10.3390/rs6054345.
Wang F, Qin Z, Song C, Tu L, Karnieli A, Zhao S. 2015. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote sensing, 7(4): 4268-4289. doi:https://doi.org/10.3390/rs70404268.
Yu X, Guo X, Wu Z. 2014. Land surface temperature retrieval from Landsat 8 TIRS-Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote sensing, 6(10): 9829-9852. doi:https://doi.org/10.3390/rs6109829.
Zakkula G. 1999. Elements of sampling theory and methods. Prentice Hall. 540 p.
Zhang J, Wang Y, Li Y. 2006. A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Computers & Geosciences, 32(10): 1796-1805. doi:https://doi.org/10.1016/j.cageo.2006.05.001.
Zhang Z, He G. 2013. Generation of Landsat surface temperature product for China, 2000–2010. International journal of remote sensing, 34(20): 7369-7375. doi:https://doi.org/10.1080/01431161.2013.820368.
_||_Asgarzadeh P, Darvishi Boloorani A, Bahrami H, Hamzeh S. 2016. Comparison between land surface temperature estimation in single and multi-channel method using LandSat images 8. Journal of RS and GIS for Natural Resources (Journal of Applied RS & GIS Techniques in Natural Resource Science), 7(3): 18-29. (In Persian).
Asghari SS, Emami H. 2018. Monitoring the land surface temperature and examining the relationship between land use and land surface temperature using from OLI and ETM+ sensor images, (Case study: Ardabil city ). Journal of Geographical Sciences, 19(53): 195-215. (In Persian). doi:https://doi.org/10.29252/jgs.19.53.195.
Barsi JA, Barker JL, Schott JR. 2003. An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477). In., pp 21-25 July 2003, vol. 2005: 3014-3016 p.
Berk A, Conforti P, Kennett R, Perkins T, Hawes F, Van Den Bosch J. 2014. MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code. In: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, pp 1-4. https://doi.org/10.1109/WHISPERS.2014.8077573.
Bernstein LS, Adler-Golden SM, Sundberg RL, Levine RY, Perkins TC, Berk A, Ratkowski AJ, Felde G, Hoke ML. 2005. Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi-and hyperspectral imagery. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. International Society for Optics and Photonics, pp 668-678. https://doi.org/610.1117/1112.603359.
Carlson TN, Ripley DA. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3): 241-252. doi:https://doi.org/10.1016/S0034-4257(97)00104-1.
Cristóbal J, Jiménez-Muñoz JC, Prakash A, Mattar C, Skoković D, Sobrino JA. 2018. An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band. Remote Sensing, 10(3): 431. doi:https://doi.org/10.3390/rs10030431.
Danodia A, Nikam R, Kumar S, Patel N. 2017. Land surface temperature retrieval by radiative transfer equation and single channel algorithms using landsat-8 satellite data. Indian Institute of Remote Sensing-ISRO: 1-7.
Feizizadeh B, Didehban K, Gholamnia K. 2016. Extraction of Land Surface Temperature (LST) based on landsat satellite images and split window algorithm Study area: Mahabad Catchment. Scientific-Research Quarterly of Geographical Data (SEPEHR), 25(98): 171-181. (In Persian).
García-Santos V, Cuxart J, Martínez-Villagrasa D, Jiménez MA, Simó G. 2018. Comparison of three methods for estimating land surface temperature from landsat 8-tirs sensor data. Remote Sensing, 10(9): 1450. doi:https://doi.org/10.3390/rs10091450.
Isaya Ndossi M, Avdan U. 2016. Application of open source coding technologies in the production of land surface temperature (LST) maps from Landsat: a PyQGIS plugin. Remote sensing, 8(5): 413. doi:https://doi.org/10.3390/rs8050413.
Jiménez‐Muñoz JC, Sobrino JA. 2003. A generalized single‐channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22). doi:https://doi.org/10.1029/2003JD003480.
Li Z-L, Tang B-H, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131: 14-37. doi:https://doi.org/10.1016/j.rse.2012.12.008.
Ndossi MI, Avdan U. 2016. Inversion of land surface temperature (LST) using Terra ASTER data: a comparison of three algorithms. Remote Sensing, 8(12): 993. doi:https://doi.org/10.3390/rs8120993.
Parastatidis D, Mitraka Z, Chrysoulakis N, Abrams M. 2017. Online global land surface temperature estimation from Landsat. Remote sensing, 9(12): 1208. doi:https://doi.org/10.3390/rs9121208.
Rubio E, Caselles V, Badenas C. 1997. Emissivity measurements of several soils and vegetation types in the 8–14, μm Wave band: Analysis of two field methods. Remote Sensing of Environment, 59(3): 490-521. doi:https://doi.org/10.1016/S0034-4257(96)00123-X.
Sahana M, Dutta S, Sajjad H. 2019. Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. International Journal of Urban Sciences, 23(2): 205-225. doi:https://doi.org/10.1080/12265934.2018.1488604.
Sajib MQU, Wang T. 2020. Estimation of Land Surface Temperature in an Agricultural Region of Bangladesh from Landsat 8: Intercomparison of Four Algorithms. Sensors, 20(6): 1778. doi:https://doi.org/10.3390/s20061778.
Sinha S, Pandey PC, Sharma LK, Nathawat MS, Kumar P, Kanga S. 2014. Remote estimation of land surface temperature for different LULC features of a moist deciduous tropical forest region. In: Srivastava PK, Mukherjee S, Gupta M, Islam T (eds) Remote Sensing Applications in Environmental Research. Springer International Publishing, Cham, pp 57-68. https://doi.org/10.1007/1978-1003-1319-05906-05908_05904.
Sobrino J, Raissouni N. 2000. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. International journal of remote sensing, 21(2): 353-366. doi:https://doi.org/10.1080/014311600210876.
Sobrino JA, Jiménez-Muñoz JC, Sòria G, Romaguera M, Guanter L, Moreno J, Plaza A, Martínez P. 2008. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2): 316-327. doi: https://doi.org/10.1109/TGRS.2007.904834.
Sobrino JA, Oltra-Carrió R, Jiménez-Muñoz JC, Julien Y, Sòria G, Franch B, Mattar C. 2012. Emissivity mapping over urban areas using a classification-based approach: Application to the Dual-use European Security IR Experiment (DESIREX). International Journal of Applied Earth Observation and Geoinformation, 18: 141-147. doi:https://doi.org/10.1016/j.jag.2012.01.022.
Srivastava PK, Han D, Rico-Ramirez MA, Bray M, Islam T, Gupta M, Dai Q. 2014. Estimation of land surface temperature from atmospherically corrected LANDSAT TM image using 6S and NCEP global reanalysis product. Environmental Earth Sciences, 72(12): 5183-5196. doi:10.1007/s12665-014-3388-1.
USGS. 2016. Landsat 8 (L8) data users handbook. Landsat Science Official Website.
USGS. 2014. USGS earthexplorer. Retrieved from http://earthexplorer.usgs.gov/.
Vlassova L, Perez-Cabello F, Nieto H, Martín P, Riaño D, De La Riva J. 2014. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sensing, 6(5): 4345-4368. doi:https://doi.org/10.3390/rs6054345.
Wang F, Qin Z, Song C, Tu L, Karnieli A, Zhao S. 2015. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote sensing, 7(4): 4268-4289. doi:https://doi.org/10.3390/rs70404268.
Yu X, Guo X, Wu Z. 2014. Land surface temperature retrieval from Landsat 8 TIRS-Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote sensing, 6(10): 9829-9852. doi:https://doi.org/10.3390/rs6109829.
Zakkula G. 1999. Elements of sampling theory and methods. Prentice Hall. 540 p.
Zhang J, Wang Y, Li Y. 2006. A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Computers & Geosciences, 32(10): 1796-1805. doi:https://doi.org/10.1016/j.cageo.2006.05.001.
Zhang Z, He G. 2013. Generation of Landsat surface temperature product for China, 2000–2010. International journal of remote sensing, 34(20): 7369-7375. doi:https://doi.org/10.1080/01431161.2013.820368.