ارزیابی عملکرد تبدیل آنالیز مؤلفه های اصلی، مستقل و کسر حداقل نویز در بهبود صحت استخراج اطلاعات از داده های ماهوارۀ سنتینل-2
الموضوعات :صیاد اصغری سراسکانرود 1 , حسن حسنی مقدم 2 , حسین فکرت 3
1 - دانشیار گروه جغرافیای طبیعی، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی، اردبیل، ایران
2 - کارشناسی ارشد سنجشازدور و سیستم اطلاعات جغرافیایی، دانشگاه خوارزمی، تهران، ایران
3 - دانشجوی کارشناسی ارشد سنجشازدور و GIS، دانشکده ادبیات و علوم انسانی، دانشگاه محقق اردبیلی، اردبیل، ایران
الکلمات المفتاحية: سنتینل-2, رضوانشهر, ضریب شفیلد, حداکثر احتمال, تبدیلات,
ملخص المقالة :
پیشینه و هدف استفاده از انواع تبدیلات جهت بهبود صحت استخراج اطلاعات از تصاویر ماهواره ای به طور فزاینده ای رو به افزایش است. در این بین انتخاب تبدیل بهینه اهمیت بالایی داشته و نتایج خروجی را تحت تأثیر قرار خواهد داد. با توجه به ماهیت همبسته تصاویر سنجش از دور، استفاده از انواع تبدیلات جهت بهبود صحت استخراج اطلاعات از این تصاویر امری ضروری است. با توجه به مطالعات انجام شده هدف این تحقیق بررسی روش های مختلف تبدیلات تصویر در بهبود روند طبقه بندی تصاویر ماهواره ای و افزایش میزان صحت نقشه های کاربری اراضی است. با در نظر گرفتن این نکته که منطقه مورد مطالعه و بهصورت کلی مناطق شمالی کشور با شرایط خاص درهم تنیدگی کاربری ها روبه رو هستند، لذا به کارگیری انواع روش های تبدیلات و همچنین روش ترکیبی پیشنهادی در این پژوهش باعث افزایش صحت و دقت اطلاعات خروجی و در نهایت امکان تفکیک و بررسی های دقیق تر کاربری ها و شناسایی عوامل تغییر آن ها را جهت برنامه ریزی های آینده فراهم می کند. در این پژوهش به منظور ارزیابی عملکرد تبدیلات آنالیز مؤلفه های اصلی، آنالیز مؤلفه های مستقل و کسر حداقل نویز از تصویر ماهواره سنتینل-2 شهرستان رضوانشهر استفاده گردید.مواد و روش هادر این پژوهش به منظور ارزیابی عملکرد روش های آنالیز مؤلفه های اصلی، آنالیز مؤلفه های مستقل و روش کسر حداقل نویز از تصاویر ماهواره سنتینل-2 شهرستان رضوانشهر استفاده گردید. از الگوریتم گرام اشمیت (Gram-Schmit) بهمنظور ادغام این داده ها با یکدیگر و رسیدن به قدرت تفکیک 10 متر استفاده شد. بعد از اعمال پیش پردازش های لازم و ادغام تصاویر با یکدیگر هر سه تبدیل روی تصویر اعمال و همچنین ترکیبی از مؤلفه های این سه روش تولید گردید. در ادامه نتایج حاصل از تبدیلات با استفاده از الگوریتم حداکثر احتمال در 8 کلاس کاربری طبقه بندی گردید. با استفاده از ضریب شفیلد و محاسبات آماری بین مؤلفه های به دست آمده، ترکیب مؤلفه های اول آنالیز مؤلفه های اصلی، اول کسر حداقل نویز و مؤلفه دوم آنالیز مؤلفههای مستقل، بهعنوان ترکیب بهینه انتخاب گردید. شناخت کلی از منطقه و مطابق آن تفسیر بصری خروجی ها و همچنین برداشت 120 نقطۀ زمینی توسط GPS مبنای ارزیابی صحت نقشه های خروجی بوده است.نتایج و بحث بعد از اعمال پیش پردازش های مورد نیاز و ادغام تصاویر با یکدیگر، هرکدام از این الگوریتم ها بر روی تصویر اعمال گردید و خروجی هر کدام با استفاده از الگوریتم حداکثر احتمال و در 8 کلاس کاربری طبقه بندی گردیدند. نتایج نقشه های خروجی نشان داد که تبدیل آنالیز مؤلفه های اصلی با توجه به اینکه برای متغیرها توزیع گوسی در نظر میگیرد و سعی بر غیر همبسته کردن مؤلفه های استخراج شده دارد، در نمونه هایی با توزیع غیر گوسی دارای ضعف بوده و عملکرد پایینی از خود نشان می دهد. الگوریتم کسر حداقل نویز مشابه الگوریتم آنالیز مؤلفه های اصلی عمل می کند با این تفاوت که نویزها را بهتر مؤلفه بندی می کند. این الگوریتم در جداسازی کلاس ها خطای کمتری داشته و همین عامل باعث عملکرد بهتر و دقت بالاتر نسبت به دو تبدیل دیگر شده است. در الگوریتم آنالیز مؤلفه های مستقل باندهای همبسته تصویر منطقه مورد مطالعه به مؤلفههای مستقل تبدیلشده و اطلاعات جدیدی از منطقه استخراج کرده است. تفسیر بصری دقت بالای نتیجه طبقه بندی را نشان می دهد و برای کمی کردن دقت تصویر طبقه بندی شده از ماتریس خطا (کانفیوژن) استفاده شده است. نتایج حاصل از ارزیابی دقت کلی و ضریب کاپا نشان داد که طبقه بندی تصویر اصلی بدون اعمال تبدیلات و با همان نمونه های تعلیمی خروجی با دقت کلی 76 درصد و ضریب کاپای 0.78 بیشترین خطا را داشته است. همچنین نتایج سایر خروجی ها به ترتیب برای طبقه بندی حاصل از تبدیل آنالیز مؤلفه های اصلی، دقت کلی 80 درصد و ضریب کاپا 0.83، برای طبقه بندی حاصل از تبدیل کسر حداقل نویز، دقت کلی 85 درصد و ضریب کاپا 0.88 و برای طبقه بندی حاصل از تبدیل آنالیز مؤلفههای مستقل، دقت کلی برابر با 77 درصد و ضریب کاپا معادل 0.80 به دست آمد. بعد از انتخاب ترکیب بهینه از مؤلفه های روش های آنالیز مؤلفه های اصلی، آنالیز مؤلفه های مستقل و روش کسر حداقل نویز و انتخاب مؤلفه های اول الگوریتم های آنالیز مؤلفه های اصلی و کسر حداقل نویز و مؤلفه دوم آنالیز مؤلفه های مستقل، دقت کلی به 92 درصد و ضریب کاپا 0.94 افزایشیافت.نتیجه گیری در این تحقیق بعد از ارزیابی عملکرد تبدیل آنالیز مؤلفه های اصلی، آنالیز مؤلفه های مستقل و روش کسر حداقل نویز، یک روش ترکیب بهینه از مؤلفه های این تبدیلات پیشنهاد گردید. نتایج تحقیق نشان داد طبقه بندی تصویر اصلی بدون اعمال تبدیلات و با همان نمونه های تعلیمی دقت کلی و ضریب کاپای پایینی داشته است. بنابراین لزوم اعمال تبدیلات جهت کاهش همبستگی باندها و مجزا سازی اجزای تصاویر احساس می شود. همان طور که نتایج تحقیق نشان داد طبقه بندی تصویر اصلی بدون اعمال تبدیلات و با همان نمونه های تعلیمی دقت کلی و ضریب کاپای پایینی داشته است. نتایج تحقیق بیانگر عملکرد نزدیک این روش ها به یکدیگر است که نشان از وجود هر دو نوع توزیع گوسی و غیر گوسی متغیرها دارد. تبدیل کسر حداقل نویز، میزان نویز دادهها را به حداقل رسانده و در خروجی نتایج بهتری از دو تبدیل آنالیز مؤلفه های مستقل و آنالیز مؤلفه های اصلی داشته است. با توجه به اینکه این تبدیلات به تنهایی قادر به استخراج تمامی اجزای تصویر نیستند، لذا ترکیبی از مؤلفه های این تبدیلات بر اساس ضریب شفیلد جهت مفروض بودن توزیع گوسی و غیر گوسی متغیرها با حداقل نویز ممکن انتخاب گردید.
Al-Ahmadi F, Al-Hames A. 2009. Comparison of four classification methods to extract land use and land cover from raw satellite images for some remote arid areas, Kingdom of Saudi Arabia. Earth Sciences, 20(1): 167-119.
Alikhah-Asl M, Elham F, Mohammad N. 2014. Evaluation of different enhancement remote sensing techniques. International Journal of Agriculture Innovations and Research, 3(1): 33-37.
Anderson JR. 1971. Land-use classification schemes. Photogrammetric Engineering, 37(4): 379-387. https://trid.trb.org/view/93641.
Arslan O, Akyürek Ö, Kaya Ş. 2017. A comparative analysis of classification methods for hyperspectral images generated with conventional dimension reduction methods. Turkish Journal of Electrical Engineering & Computer Sciences, 25(1): 58-72. doi:https://doi.org/10.3906/elk-1503-167.
Barzegari Dehaj V, Zare M, Mokhtari MH, Ekhtesasi MR. 2018. Evaluation of different satellite image enhancement techniques in separating of geological units. Journal of RS and GIS for Natural Resources, 9(1): 1-23. http://girs.iaubushehr.ac.ir/article_540405_en.html. (In Persian).
Bellvert J, Jofre-Ĉekalović C, Pelechá A, Mata M, Nieto H. 2020. Feasibility of using the two-source energy balance model (TSEB) with Sentinel-2 and Sentinel-3 images to analyze the spatio-temporal variability of vine water status in a vineyard. Remote Sensing, 12(14): 2299. doi:https://doi.org/10.3390/rs12142299.
Congalton RG, Green K. 2019. Assessing the accuracy of remotely sensed data: principles and practices. CRC press. 139 p.
Dabiri Z, Lang S. 2018. Comparison of independent component analysis, principal component analysis, and minimum noise fraction transformation for tree species classification using APEX hyperspectral imagery. ISPRS International Journal of Geo-Information, 7(12): 488. doi:https://doi.org/10.3390/ijgi7120488.
ESA. 2017. (Standard Document), SENTINEL-2 User Handbook, 2.
ESA. 2018. SNAP-Sen2Cor, Available online: http://step.esa.int/main/third-party-plugins-2/sen2cor.
Estornell J, Martí-Gavilá JM, Sebastiá MT, Mengual J. 2013. Principal component analysis applied to remote sensing. Modelling in Science Education and Learning, 6: 83-89. doi:https://doi.org/10.4995/msel.2013.1905.
Green AA, Berman M, Switzer P, Craig MD. 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on geoscience and remote sensing, 26(1): 65-74. doi:https://doi.org/10.1109/36.3001.
Guan H, Liu H, Meng X, Luo C, Bao Y, Ma Y, Yu Z, Zhang X. 2020. A quantitative monitoring method for determining Maize lodging in different growth stages. Remote Sensing, 12(19): 3149. doi:https://doi.org/10.3390/rs12193149.
Hyvärinen A, Oja E. 1997. A fast fixed-point algorithm for independent component analysis. Neural computation, 9(7): 1483-1492. doi:https://doi.org/10.1162/neco.1997.9.7.1483.
Ibarrola-Ulzurrun E, Marcello J, Gonzalo-Martin C. 2017. Assessment of component selection strategies in hyperspectral imagery. Entropy, 19(12): 666. doi:https://doi.org/10.3390/e19120666.
Javan F, Hasani Moghaddam H. 2017. Deforestation detection of Hyrcania forest using satellite imagery and Support Vector Machine (Case study: Rezvanshahr county). Forest Strategical Approchment Journal, 2(5): 1-13. https://www.magiran.com/paper/1706792. (In Persian).
Li X, Chen W, Cheng X, Liao Y, Chen G. 2017. Comparison and integration of feature reduction methods for land cover classification with RapidEye imagery. Multimedia Tools and Applications, 76(21): 23041-23057. doi:https://doi.org/10.1007/s11042-016-4311-4.
Luo G, Chen G, Tian L, Qin K, Qian S-E. 2016. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Canadian Journal of Remote Sensing, 42(2): 106-116. doi:https://doi.org/10.1080/07038992.2016.1160772.
Manly BF, Alberto JAN. 2016. Multivariate statistical methods: a primer. Chapman and Hall/CRC. 269 p. https://doi.org/10.1201/9781315382135.
Matkan AA, Nohegar A, Mirbagheri B, Torkchin N. 2014. Assessment relations of land use in heat islands using time series ASTER sensor data (Case study: Bandar Abbas city). Journal of RS and GIS for Natural Resources, 5(4): 1-14. http://girs.iaubushehr.ac.ir/m/article_516652.html?lang=en. (In Persian).
Nascimento JM, Dias JM. 2005. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE transactions on Geoscience and Remote Sensing, 43(4): 898-910. doi:https://doi.org/10.1109/TGRS.2005.844293.
Pohl C, Van Genderen J. 2016. Remote sensing image fusion: A practical guide. Crc Press. 288 p. https://doi.org/10.1201/9781315370101.
Pu R. 2017. Hyperspectral remote sensing: fundamentals and practices. CRC Press. 575 p.
Richards JA, Richards J. 2013. Remote sensing digital image analysis. Springer, Edition Number 5, XIX, 494 p. https://doi.org/10.1007/978-3-642-30062-2.
Sheffield C. 1985. Selecting Band Combinations from Multi Spectral Data. Photogrammetric Engineering and Remote Sensing, 58(6): 681-687. https://ci.nii.ac.jp/naid/80002491091.
Strîmbu VF, Strîmbu BM. 2015. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 104: 30-43. doi:https://doi.org/10.1016/j.isprsjprs.2015.01.018.
Vidhyavathi R. 2017. Principal component analysis (PCA) in medical image processing using digital imaging and communications in medicine (DICOM) medical images. International Journal of Pharma and Biol Sciences, 8(2): 598-606. doi:http://dx.doi.org/10.22376/ijpbs.2017.8.2.b.598-606.
Wang L, Zhang J, Liu P, Choo K-KR, Huang F. 2017. Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Computing, 21(1): 213-221. doi:https://doi.org/10.1007/s00500-016-2246-3.
Yang M-D, Huang K-H, Tsai H-P. 2020. Integrating MNF and HHT transformations into artificial neural networks for hyperspectral image classification. Remote Sensing, 12(14): 2327. doi:https://doi.org/10.3390/rs12142327.
Zhang X, Chen CH. 2002. New independent component analysis method using higher order statistics with application to remote sensing images. Optical Engineering, 41: 1717-1728. doi:https://doi.org/10.1117/1.1482722.
Zhang Y, Zhang J, Yang W. 2020. Quantifying Information Content in Multispectral Remote-Sensing Images Based on Image Transforms and Geostatistical Modelling. Remote Sensing, 12(5): 880. doi:https://doi.org/10.3390/rs12050880.
_||_Al-Ahmadi F, Al-Hames A. 2009. Comparison of four classification methods to extract land use and land cover from raw satellite images for some remote arid areas, Kingdom of Saudi Arabia. Earth Sciences, 20(1): 167-119.
Alikhah-Asl M, Elham F, Mohammad N. 2014. Evaluation of different enhancement remote sensing techniques. International Journal of Agriculture Innovations and Research, 3(1): 33-37.
Anderson JR. 1971. Land-use classification schemes. Photogrammetric Engineering, 37(4): 379-387. https://trid.trb.org/view/93641.
Arslan O, Akyürek Ö, Kaya Ş. 2017. A comparative analysis of classification methods for hyperspectral images generated with conventional dimension reduction methods. Turkish Journal of Electrical Engineering & Computer Sciences, 25(1): 58-72. doi:https://doi.org/10.3906/elk-1503-167.
Barzegari Dehaj V, Zare M, Mokhtari MH, Ekhtesasi MR. 2018. Evaluation of different satellite image enhancement techniques in separating of geological units. Journal of RS and GIS for Natural Resources, 9(1): 1-23. http://girs.iaubushehr.ac.ir/article_540405_en.html. (In Persian).
Bellvert J, Jofre-Ĉekalović C, Pelechá A, Mata M, Nieto H. 2020. Feasibility of using the two-source energy balance model (TSEB) with Sentinel-2 and Sentinel-3 images to analyze the spatio-temporal variability of vine water status in a vineyard. Remote Sensing, 12(14): 2299. doi:https://doi.org/10.3390/rs12142299.
Congalton RG, Green K. 2019. Assessing the accuracy of remotely sensed data: principles and practices. CRC press. 139 p.
Dabiri Z, Lang S. 2018. Comparison of independent component analysis, principal component analysis, and minimum noise fraction transformation for tree species classification using APEX hyperspectral imagery. ISPRS International Journal of Geo-Information, 7(12): 488. doi:https://doi.org/10.3390/ijgi7120488.
ESA. 2017. (Standard Document), SENTINEL-2 User Handbook, 2.
ESA. 2018. SNAP-Sen2Cor, Available online: http://step.esa.int/main/third-party-plugins-2/sen2cor.
Estornell J, Martí-Gavilá JM, Sebastiá MT, Mengual J. 2013. Principal component analysis applied to remote sensing. Modelling in Science Education and Learning, 6: 83-89. doi:https://doi.org/10.4995/msel.2013.1905.
Green AA, Berman M, Switzer P, Craig MD. 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on geoscience and remote sensing, 26(1): 65-74. doi:https://doi.org/10.1109/36.3001.
Guan H, Liu H, Meng X, Luo C, Bao Y, Ma Y, Yu Z, Zhang X. 2020. A quantitative monitoring method for determining Maize lodging in different growth stages. Remote Sensing, 12(19): 3149. doi:https://doi.org/10.3390/rs12193149.
Hyvärinen A, Oja E. 1997. A fast fixed-point algorithm for independent component analysis. Neural computation, 9(7): 1483-1492. doi:https://doi.org/10.1162/neco.1997.9.7.1483.
Ibarrola-Ulzurrun E, Marcello J, Gonzalo-Martin C. 2017. Assessment of component selection strategies in hyperspectral imagery. Entropy, 19(12): 666. doi:https://doi.org/10.3390/e19120666.
Javan F, Hasani Moghaddam H. 2017. Deforestation detection of Hyrcania forest using satellite imagery and Support Vector Machine (Case study: Rezvanshahr county). Forest Strategical Approchment Journal, 2(5): 1-13. https://www.magiran.com/paper/1706792. (In Persian).
Li X, Chen W, Cheng X, Liao Y, Chen G. 2017. Comparison and integration of feature reduction methods for land cover classification with RapidEye imagery. Multimedia Tools and Applications, 76(21): 23041-23057. doi:https://doi.org/10.1007/s11042-016-4311-4.
Luo G, Chen G, Tian L, Qin K, Qian S-E. 2016. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Canadian Journal of Remote Sensing, 42(2): 106-116. doi:https://doi.org/10.1080/07038992.2016.1160772.
Manly BF, Alberto JAN. 2016. Multivariate statistical methods: a primer. Chapman and Hall/CRC. 269 p. https://doi.org/10.1201/9781315382135.
Matkan AA, Nohegar A, Mirbagheri B, Torkchin N. 2014. Assessment relations of land use in heat islands using time series ASTER sensor data (Case study: Bandar Abbas city). Journal of RS and GIS for Natural Resources, 5(4): 1-14. http://girs.iaubushehr.ac.ir/m/article_516652.html?lang=en. (In Persian).
Nascimento JM, Dias JM. 2005. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE transactions on Geoscience and Remote Sensing, 43(4): 898-910. doi:https://doi.org/10.1109/TGRS.2005.844293.
Pohl C, Van Genderen J. 2016. Remote sensing image fusion: A practical guide. Crc Press. 288 p. https://doi.org/10.1201/9781315370101.
Pu R. 2017. Hyperspectral remote sensing: fundamentals and practices. CRC Press. 575 p.
Richards JA, Richards J. 2013. Remote sensing digital image analysis. Springer, Edition Number 5, XIX, 494 p. https://doi.org/10.1007/978-3-642-30062-2.
Sheffield C. 1985. Selecting Band Combinations from Multi Spectral Data. Photogrammetric Engineering and Remote Sensing, 58(6): 681-687. https://ci.nii.ac.jp/naid/80002491091.
Strîmbu VF, Strîmbu BM. 2015. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 104: 30-43. doi:https://doi.org/10.1016/j.isprsjprs.2015.01.018.
Vidhyavathi R. 2017. Principal component analysis (PCA) in medical image processing using digital imaging and communications in medicine (DICOM) medical images. International Journal of Pharma and Biol Sciences, 8(2): 598-606. doi:http://dx.doi.org/10.22376/ijpbs.2017.8.2.b.598-606.
Wang L, Zhang J, Liu P, Choo K-KR, Huang F. 2017. Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Computing, 21(1): 213-221. doi:https://doi.org/10.1007/s00500-016-2246-3.
Yang M-D, Huang K-H, Tsai H-P. 2020. Integrating MNF and HHT transformations into artificial neural networks for hyperspectral image classification. Remote Sensing, 12(14): 2327. doi:https://doi.org/10.3390/rs12142327.
Zhang X, Chen CH. 2002. New independent component analysis method using higher order statistics with application to remote sensing images. Optical Engineering, 41: 1717-1728. doi:https://doi.org/10.1117/1.1482722.
Zhang Y, Zhang J, Yang W. 2020. Quantifying Information Content in Multispectral Remote-Sensing Images Based on Image Transforms and Geostatistical Modelling. Remote Sensing, 12(5): 880. doi:https://doi.org/10.3390/rs12050880.