مدل سازی و مطالعه ارتباط کمی ساختار-خاصیت جهت پیش بینی نیمه عمر بی فنیل های پلی کلرینه با استفاده از رگرسیون خطی چند متغیره و شبکه های عصبی مصنوعی
الموضوعات : شیمی کوانتومی و اسپکتروسکوپیسکینه بهرامی نسب 1 , مهدی نکوئی 2 , سیدعباس طاهری 3
1 - گروه علم اطلاعات و دانش شناسی، دانشگاه شهید بهشتی، تهران
2 - دانشگاه آزاد شاهرود
3 - دانشگاه آزاد شاهرود
الکلمات المفتاحية: Artificial Neural Network, شبکه عصبی مصنوعی, multiple linear regression, ارتباط کمی ساختار- خاصیت, رگرسیون خطی چند گانه, Quantitative structure-property relationship, بی فنیل های پلی کلرینه, زمان نیمه عمر, polychlorinated biphenyls, half-life,
ملخص المقالة :
مطالعه ارتباط کمی ساختار-خاصیت(QSPR) جهت پیش بینی زمان نیمه عمر برخی مشتقات بی فنیل های پلی کلرینهبا استفاده از روشهای رگرسیون خطی چند متغیره(MLR) و شبکه های عصبی مصنوعی(ANN) انجام شد. در ابتدا ساختار ترکیبات، رسم و گروه مناسبی از توصیف کننده ها محاسبه شدند. سپس از روش انتخاب مرحله ای برای بدست آوردن بهترین توصیف کننده ها که بیشترین ارتباط را با نیمه عمر ترکیبات مورد نظر داشتند استفاده گردید. با این روش 6 توصیف کننده شاملLop, GATS5m, GATS8m, LDip, RDF020u, R2v+ که از انواع توصیف کننده های توپولوژیکی، بار، نمایش سه بعدی مولکول بر اساس پراش الکترونی و تابع توزیع شعاعی هستند انتخاب گردید. در ابتدا مدل خطی MLR ساخته شد. سپس برای به دست آوردن نتایج بهتر از شبکه عصبی مصنوعی استفاده گردید. مقادیر ضریب تعیین (R2) و ریشه میانگین مربعات خطا (RMSE) برای سری تست به ترتیب برابر 716/0 و 050/0 برای مدل خطی MLR و 896/0 و 030/0 برای مدل غیرخطی ANN بدست آمد. داده های آماری، برتری روش ANN را نسبت به روش MLR نشان می دهد.
_||_