کاهش اثرگلبرگ های فرعی ناشی از سیستم فشرده سازی پالس باینری با استفاده از ساختار موازی فیلتر منطبق و غیر منطبق
الموضوعات :ابراهیم علی بابایی 1 , روح اله آقاجانی 2
1 - دانشکده مهندسی برق- دانشگاه آزاد نجف آباد- نجف آباد –ایران
2 - گروه مخابرات دانشکده مهندسی برق دانشگاه آزاد اسلامی واحد نجف آباد اصفهان ایران
الکلمات المفتاحية: گلبرگ های فرعی, فشردهسازی پالس, فیلتر منطبق, فیلتر غیر منطبق, Sub petals, Pulse compression, Match filter, Non-match filter,
ملخص المقالة :
تفکیک پذیری بالا از معیار های سنجش عملکرد یک سامانه راداری است و تفکیک پذیری بالا با پهنای سیگنال کم ممکن می شود. برد رادار به انرژی ارسالی آن بستگی دارد. با استفاده از روش های فشرده سازی پالس می توان انرژی یک پالس پهن و تفکیک در برد متناظر با یک پالس باریک را به طور همزمان در اختیار داشت. مبنای کار رادار های فشرده سازی پالس بر اساس فیلتر منطبق و تابع خود همبستگی است. در رادار، اکوی بازگشتی از هدف در واقع نسخه ی تاخیر یافته زمانی یا شیفت داپلر یافته سیگنال ارسالی است. فیلتر منطبق بین سیگنال دریافتی و نسخه ی از کد ارسالی همبستگی می گیرد خروجی فیلتر منطبق علاوه برداشتن یک گلبرگ اصلی، شامل دنباله ای از گلبرگ های فرعی نیز است که این گلبرگ های فرعی موجب بالا رفتن احتمال هشدار غلط و یا پوشیده ماندن اهداف کوچک، در کنار اهداف بزرگ با سطح گلبرگ فرعی بالا می شود. فیلتر غیر منطبق با استفاده از ضرایب وزن دهی سطح گلبرگ های فرعی را کاهش می دهد ولی موجب افزایش طول فیلتر می شود.در این مقاله یک ساختار فیلتر موازی معرفی می شود که همزمان مزایای فیلتر منطبق و غیر منطبق را دارد. ود ر سناریو تعریف شده اهداف ثابت توانست ضمن کاهش سطح گلبرگ فرعی به میزان dB2/12 بازه حضور گلبرگ فرعی را نیز به یک چهارم تقلیل دهد .
[1] Skolnik, M. I, “Introduction to Radar Systems,” 3rd ed. New York: McGraw-Hill, pp. 339-369, 2001.
[2] Barker, R. H, “Group synchronization of binary digital systems,” In W. Jackson (Ed.), Communication Theory, Burlington, MA: Academic Press, 1953.
[3] N. Levanon and E. Mozeson, “Radar Signals.” Hoboken, NJ, Wiley, 2004.
[4] I. MaynulSarker, R. haider, G. Mohammed et al, “Comparison of Analog and Digital Pulse Compression Technique and Reduction of Side lobes Using Transversal Filter,” Electrical Engineering and Information & Communication Technology (ICEEICT), 2014 International Conference, Dhaka, 10-12 Apr 2014, pp.1 - 4.
[5] Nunn, C. J. and Coxson, G. E. “Best-known autocorrelation Peak sidelobe levels for binary codes of length 71 to 105,”IEEE Transactions on Aerospace and Electronic Systems vol. 44, pp.392-395, Jan. 2008.
[6] A. Divito, A. Farina, et al. “Synthesis and evaluation of phase codes for pulse compression radar”, Rivista Tecnica Selenia 9, no.2, pp. 12-24, 1985.
[7] Turyn, R. and Stover, J. On binary sequences. Proceedings of the American Mathematical Society”, 12 (June 1961), 394—399.
[8] Lindner, J. “Binary sequences up to length 40 with best possible autocorrelation function”. Electronics Letters, 11 (Oct.1975), 507.
[9] Deng, H. “Synthesis of binary sequences with good auto-correlation and cross-correlation properties by simulated annealing IEEE Transactions on Aerospace and Electronic Systems, 32 (Jan. 1996), 98—107.
[10] Nunn, C. J. and Coxson, G. E.“Best-known autocorrelation Peak sidelobe levels for binary codes of length 71 to 105”. IEEE Transactions on Aerospace and Electronic Systems, 44(Jan. 2008), 392—395.
[11] B. kiramai, P. Rajesh kumar, “Performance Evaluation of Compound Barker Codes using Cascaded Mismatched Filter Technique”, International Journal of Computer Applications,vol. 121, no.19, pp.31-34, Jul 2015.
[12] Sarkar, I. and Fam, A. T. “Factored multiplicative mismatched filters for compound Barker codes”, In Proceedings of the IEEE International Radar, Conference, Apr. 2007, 541—545.
[13] N. Muralidhara , Rajesh B ,et al. “Designing polyphase code for digital pulse compression for surveillance radar”,2017 IEEE second international computing and communications technologioes(ICCCT17).
[14] I.Torok and R.Seller,“pulse compression in search radar,”Periodica Polytechnica Electrical Engineering, vol. 42, no. 4, pp. 391-408, 1998.
[15] Ackroyd, M. H. and Ghani, F.“Optimum mismatched filters for sidelobe suppression”. IEEE Transactions on Aerospace and Electronic Systems, AES-9 (Mar. 1973),PP 214—218.
[16] Jung, K. T., et al.Design of optimum mean square sidelobe suppressionfilters for Barker codes. In Proceedings of the IEEE International Radar Conference, Oct. 1992, 530—533.
[17] Zoraster, S. Minimum peak range sidelobe filters for binary phasecoded waveforms. IEEE Transactions on Aerospace and Electronic Systems, AES-16 (Jan. 1980), 112—115.
[18] Baden, J. M. and Cohen, M. N. “Optimal peak sidelobe filters for biphase pulse compression”. InProceedings of the IEEE International Radar Conference, May 1990, 249—252.
[19] Baden, J. M. and Cohen, M. N. “Optimal sidelobe suppression for biphase codes”. In Proceedings of the IEEE Telesystems Conference,1991, 127-131.
[20] Rihaczek, A. W. and Golden, R. M. “Range sidelobe suppression for Barker codes”, IEEE Transactions on Aerospace and Electronic Systems,AES-7 (Nov. 1971), 1087—1092.
[21] Hua, C. X. and Oksman, J.A new algorithm to optimize Barker code sidelobe and suppression filter. IEEE Transactions on Aerospace and Electronic Systems, 26 (July 1990), 673—677.
[22] M. McLiden, J. Carswell, L. Li, et al. “Utilizing versatile transmission waveforms to mitigate pulse-compression range sidelobes with the HIWRAP radar,” IEEE Trans. Geosci. Remote Sens., vol.10, no.6, pp.1365-1368, November 2013.
[23] L. Li, G. Heymsfield, J. Carswell, et al.“The NASA High-Altitude Imaging Wind and Rain Airborne Profiler,” IEEE Trans. Geosci. Remote Sens., vol. 54, no.1, pp. 298-310, January 2016.
[24] A. Akbaripur, MH. Bastani, “Range Sidelobe Reduction Filter Design for Binary Coded Pulse Compression System”, IEEE Trans. Aerosp., Electron. Syst., vol. 48, no. 1, pp. 348 – 359, Jan 2012.
[25] N. Levanon, “Creating Sidelobe-Free Range Zone Around Detected Radar Target”, 2014 IEEE 28th Convent of Electrical & Electronics Engineers (IEEEI), 3-5 Dec 2014, Eilat, pp.1-5.
[26] V. Baghel, G. Panda, “Development of an efficient hybrid model for range sidelobe suppression in pulse compression radar.”Aerospace Science and Technology, vol. 27, no.1, pp. 156–162, Jun 2013.
[27] S. Davis, A. Lanterman, “Minimum Integrated Sidelobe Ratio Filters for MIMO Radar,” IEEE Trans. Aerosp., Electron. Syst. vol. 51, no.1, pp. 405 – 416, Jan 2015.
[28] P.Oo, G.Jpdlo, F.Kzolx.et al,“Joint design of phase coded waveform and mismatched filter,” 2015 IEEE Radar Conference, 27-30 Oct. 2015, Johannesburg pp. 32 - 36.
[29] K. Kayania, J. Hashm, “A novel non-coherent radar pulse compression technique based on periodic m-sequences”, Aerospace Science and Technology, vol. 53, no.1, pp.188-193, Jun 2016.
_||_[1] Skolnik, M. I, “Introduction to Radar Systems,” 3rd ed. New York: McGraw-Hill, pp. 339-369, 2001.
[2] Barker, R. H, “Group synchronization of binary digital systems,” In W. Jackson (Ed.), Communication Theory, Burlington, MA: Academic Press, 1953.
[3] N. Levanon and E. Mozeson, “Radar Signals.” Hoboken, NJ, Wiley, 2004.
[4] I. MaynulSarker, R. haider, G. Mohammed et al, “Comparison of Analog and Digital Pulse Compression Technique and Reduction of Side lobes Using Transversal Filter,” Electrical Engineering and Information & Communication Technology (ICEEICT), 2014 International Conference, Dhaka, 10-12 Apr 2014, pp.1 - 4.
[5] Nunn, C. J. and Coxson, G. E. “Best-known autocorrelation Peak sidelobe levels for binary codes of length 71 to 105,”IEEE Transactions on Aerospace and Electronic Systems vol. 44, pp.392-395, Jan. 2008.
[6] A. Divito, A. Farina, et al. “Synthesis and evaluation of phase codes for pulse compression radar”, Rivista Tecnica Selenia 9, no.2, pp. 12-24, 1985.
[7] Turyn, R. and Stover, J. On binary sequences. Proceedings of the American Mathematical Society”, 12 (June 1961), 394—399.
[8] Lindner, J. “Binary sequences up to length 40 with best possible autocorrelation function”. Electronics Letters, 11 (Oct.1975), 507.
[9] Deng, H. “Synthesis of binary sequences with good auto-correlation and cross-correlation properties by simulated annealing IEEE Transactions on Aerospace and Electronic Systems, 32 (Jan. 1996), 98—107.
[10] Nunn, C. J. and Coxson, G. E.“Best-known autocorrelation Peak sidelobe levels for binary codes of length 71 to 105”. IEEE Transactions on Aerospace and Electronic Systems, 44(Jan. 2008), 392—395.
[11] B. kiramai, P. Rajesh kumar, “Performance Evaluation of Compound Barker Codes using Cascaded Mismatched Filter Technique”, International Journal of Computer Applications,vol. 121, no.19, pp.31-34, Jul 2015.
[12] Sarkar, I. and Fam, A. T. “Factored multiplicative mismatched filters for compound Barker codes”, In Proceedings of the IEEE International Radar, Conference, Apr. 2007, 541—545.
[13] N. Muralidhara , Rajesh B ,et al. “Designing polyphase code for digital pulse compression for surveillance radar”,2017 IEEE second international computing and communications technologioes(ICCCT17).
[14] I.Torok and R.Seller,“pulse compression in search radar,”Periodica Polytechnica Electrical Engineering, vol. 42, no. 4, pp. 391-408, 1998.
[15] Ackroyd, M. H. and Ghani, F.“Optimum mismatched filters for sidelobe suppression”. IEEE Transactions on Aerospace and Electronic Systems, AES-9 (Mar. 1973),PP 214—218.
[16] Jung, K. T., et al.Design of optimum mean square sidelobe suppressionfilters for Barker codes. In Proceedings of the IEEE International Radar Conference, Oct. 1992, 530—533.
[17] Zoraster, S. Minimum peak range sidelobe filters for binary phasecoded waveforms. IEEE Transactions on Aerospace and Electronic Systems, AES-16 (Jan. 1980), 112—115.
[18] Baden, J. M. and Cohen, M. N. “Optimal peak sidelobe filters for biphase pulse compression”. InProceedings of the IEEE International Radar Conference, May 1990, 249—252.
[19] Baden, J. M. and Cohen, M. N. “Optimal sidelobe suppression for biphase codes”. In Proceedings of the IEEE Telesystems Conference,1991, 127-131.
[20] Rihaczek, A. W. and Golden, R. M. “Range sidelobe suppression for Barker codes”, IEEE Transactions on Aerospace and Electronic Systems,AES-7 (Nov. 1971), 1087—1092.
[21] Hua, C. X. and Oksman, J.A new algorithm to optimize Barker code sidelobe and suppression filter. IEEE Transactions on Aerospace and Electronic Systems, 26 (July 1990), 673—677.
[22] M. McLiden, J. Carswell, L. Li, et al. “Utilizing versatile transmission waveforms to mitigate pulse-compression range sidelobes with the HIWRAP radar,” IEEE Trans. Geosci. Remote Sens., vol.10, no.6, pp.1365-1368, November 2013.
[23] L. Li, G. Heymsfield, J. Carswell, et al.“The NASA High-Altitude Imaging Wind and Rain Airborne Profiler,” IEEE Trans. Geosci. Remote Sens., vol. 54, no.1, pp. 298-310, January 2016.
[24] A. Akbaripur, MH. Bastani, “Range Sidelobe Reduction Filter Design for Binary Coded Pulse Compression System”, IEEE Trans. Aerosp., Electron. Syst., vol. 48, no. 1, pp. 348 – 359, Jan 2012.
[25] N. Levanon, “Creating Sidelobe-Free Range Zone Around Detected Radar Target”, 2014 IEEE 28th Convent of Electrical & Electronics Engineers (IEEEI), 3-5 Dec 2014, Eilat, pp.1-5.
[26] V. Baghel, G. Panda, “Development of an efficient hybrid model for range sidelobe suppression in pulse compression radar.”Aerospace Science and Technology, vol. 27, no.1, pp. 156–162, Jun 2013.
[27] S. Davis, A. Lanterman, “Minimum Integrated Sidelobe Ratio Filters for MIMO Radar,” IEEE Trans. Aerosp., Electron. Syst. vol. 51, no.1, pp. 405 – 416, Jan 2015.
[28] P.Oo, G.Jpdlo, F.Kzolx.et al,“Joint design of phase coded waveform and mismatched filter,” 2015 IEEE Radar Conference, 27-30 Oct. 2015, Johannesburg pp. 32 - 36.
[29] K. Kayania, J. Hashm, “A novel non-coherent radar pulse compression technique based on periodic m-sequences”, Aerospace Science and Technology, vol. 53, no.1, pp.188-193, Jun 2016.