مدیریت تقاضا در یک ریز شبکه متصل به شبکه با استفاده از کنترل مدل پیش بین
الموضوعات :مسعود بنیانی 1 , محمد مهدی قنبریان 2 , محسن سیماب 3
1 - دانشجو, گروه مهندسی برق، واحد مرودشت، دانشگاه ازاد اسلامی، مرودشت، ایران
2 - استادیار گروه برق، دانشکده فنی مهندسی ، دانشگاه آزاد اسلامی واحد کازرون، کازرون، ایران
3 - استادیار گروه برق، گروه مهندسی برق، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
الکلمات المفتاحية: ریزشبکه, کنترل مدل پیش¬بینی, مدیریت تقاضا, منابع انرژی تجدیدپذیر,
ملخص المقالة :
در این مقاله، از روش کنترل مدل پیشبین اقتصادی برای کنترل و بهره¬برداری بهینه از تعرفه سیستمهای فتوولتائیک، دیزل ژنراتور و ریز شبکه¬ها با دو شرایط جزیره¬ای و متصل به شبکه، استفاده شده است. به¬منظور داشتن عملکرد بهینه، از روش¬های کنترلی شامل سیستم کنترل حلقه بسته، کنترل بهینه حلقه باز و تقویت حلقهی باز اولیه استفاده شده است. هدف اصلی این مقاله به حداقل رساندن انرژی شبکهی برق و هزینه¬های سوخت از طریق ارزیابی محدودیت¬های مربوط به سطح تراز سوخت در مخازن سوخت دیزلی می¬باشد. در روش¬های کنترلی استفاده شده علاوه بر انطباق با محدودیت¬ها در بین متغیرهای قابلکنترل، الزامات بار نیز برآورده می¬شود. به ¬منظور به ¬دست آوردن مزایای بازخورد و پیش¬بینی، زمان¬بندی توان بهینه به عنوان یک مسئله کنترل سیستم انرژی پشتیبان و نیز دیزل ژنراتور متصل به ریزشبکه بر اساس ساختار برنامهریزی خطی مدلسازی شده است. به طور خاص، تجزیه و تحلیل به دو گروه تقسیم می¬شود. اولین مورد در مدل جایگزین زمانی است که خاموشی بین ساعت 7 صبح الی 6 بعدازظهر اتفاق میافتد و دیگری در حالتی است که کل شبکه در 24 ساعت در دسترس می¬باشد. بررسی وضعیت مصرف انرژی نشان میدهد، صرفه¬جویی در هزینه و بالا رفتن درآمد، با استفاده از روش پیشنهادی بهبود یافته است. به طوری¬ که، صرفه¬جویی در مصرف انرژی روزانه می¬تواند تا 52 درصد باشد. درحالیکه مصرف انرژی دیزل تا 85 درصد کاهش می¬یابد. کنترل عملیات بهینه می¬تواند بهخوبی با عدم قطعیت و اختلال درنتیجه استفاده از روشهای کنترلی ارائه شده، همراه باشد.
Economic forecasting model control, and using a photovoltaic backup system and a diesel generator connected to the microgrid.
Assessment of limits to fuel level in diesel tanks.
Predictive model control algorithm to determine the optimal values of future control inputs in a closed loop system.
Gray Wolf Optimization Algorithm by Investigating Smart Grid Complexity with Uncertainties Related to PHEV Charging Behavior.
[1] R. Faia, P. Faria and Z. Vale, "Demand response optimization using particle swarm algorithm considering optimum battery energy storage schedule in a residential house," Energies, vol. 12, no. 2, p. 1645, 2019, doi: 10.3390/en12091645.
[2] S. Chapaloglou et al., "Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system," Applied energy, vol. 238, pp. 627-642, 2019, doi: 10.1016/j.apenergy.2019.01.102.
[3] F. S. Mahmoud et al., "Optimal sizing of smart hybrid renewable energy system using different optimization algorithms," Energy Reports, vol. 8, pp. 4935-4956, 2022, doi: 10.1016/j.egyr.2022.03.197.
[4] S. Mouassa et al., "Ant lion optimizer for solving optimal reactive power dispatch problem in power systems," Engineering science and technology, an international journal , vol.20, no.3, pp. 885-895, 2017, doi: 10.1016/j.egyr.2022.03.197.
[5] F. Ahmed and Y. A. Almoataz, "Single and multi-objective operation management of micro-grid using krill herd optimization and ant lion optimizer algorithms," International Journal of Energy and Environmental Engineering , vol.9, no.3, pp. 257-271, 2018, doi: 10.1007/s40095-018-0266-8.
[6] P. Arboleya et al., "Efficient Energy Management in Smart Micro-Grids: ZERO Grid Impact Buildings," in IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 1055-1063, March 2015, doi: 10.1109/TSG.2015.2392071.
[7] H. Vaikund and S. G. Srivani, "Trends in energy management system for smart microgrid—an overview," Advances in Signal and Data Processing . Lecture Notes in Electrical Engineering, vol. 703, 2021, doi: 10.1007/978-981-15-8391-9_2.
[8] S. Samal, P. K. Hota and P. K. Barik, "Power quality assessment of a solar PV and fuel cell-based distributed generation system using unified power quality conditioner," International Journal of Ambient Energy,vol. 43, no. 1, pp. 3294-3304, 2022, doi: 10.1080/01430750.2020.1824940.
[9] T. Adefarati and R. C. Bansal, "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied energy ,vol. 236, pp. 1089-1114, 2019, doi: 10.1016/j.apenergy.2018.12.050.
[10] K. Ndwali, J. G. Njiri and E. M. Wanjiru. "Optimal operation control of microgrid connected photovoltaic-diesel generator backup system under time of use tariff," Journal of Control, Automation and Electrical Systems, vol. 31, no. 4, pp. 1001-1014, 2020, doi: 10.1007/s40313-020-00585-w.
[11] M. A. Velasquez, J. Barreiro-Gomez, N. Quijano, A. I. Cadena and M. Shahidehpour, "Intra-Hour Microgrid Economic Dispatch Based on Model Predictive Control," in IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 1968-1979, May 2020, doi: 10.1109/TSG.2019.2945692.
[12] W. Dong et al., "Adaptive optimal fuzzy logic based energy management in multi-energy microgrid considering operational uncertainties," Applied Soft Computing, vol. 98, p. 106882, 2021, doi: 10.1016/j.asoc.2020.106882
[13] S.R. Salkuti, P. Sravanthi and S.C. Kim, "Social welfare maximization based optimal energy and reactive power dispatch using ant lion optimization algorithm,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 19, no. 4, p. 1379, Aug. 2021, doi: 10.12928/telkomnika.v19i4.18351.
[14] H. K. Pujari and M. Rudramoorthy, "Optimal design, techno-economic and sensitivity analysis of a grid-connected hybrid renewable energy system: a case study," International Journal of Emerging Electric Power Systems, 2022.
[15] L. Jianlin and T. Yuliang, "Model Predictive Control Method of hybrid Battery energy storage system for Smoothing Wind Power Fluctuation," E3S Web of Conferences, vol. 194, no. 2, 2020, doi: 10.1051/e3sconf/202019402003.
[16] Z. Movahediyan and A. Askarzadeh, "Multi-objective optimization framework of a photovoltaic-diesel generator hybrid energy system considering operating reserve," Sustainable Cities and Society , vol. 41, pp. 1-12, 2018, doi: 10.1016/j.scs.2018.05.002.
[17] M. Lamnadi et al., "Optimal design of stand-alone hybrid power system using wind and solar energy sources," International Journal of Energy Technology and Policy, vol. 15, no .2/3, pp. 280-300, 2019, doi: 10.1504/IJETP.2019.10019646.
[18] S. Mandelli, J. Barbieri, R. Mereu and E. Colombo, “Off-grid systems for rural electrification in developing countries: definitions, classification and a comprehensive literature review,” Renew Sustain Energy Rev , vol. 58, pp. 1621-1646, 2016, doi: 10.1016/j.rser.2015.12.338.
[19] F. Garcia-Torres, A. Zafra-Cabeza, C. Silva, S. Grieu, T. Darure and A. Estanqueiro, “Model Predictive Control for Microgrid Functionalities: Review and Future Challenges. Energies,” Energies, vol. 14, no. 5, p. 1296, 2021, doi: 10.3390/en14051296.
[20] R. Huang et al., "Accelerated Derivative-Free Deep Reinforcement Learning for Large-Scale Grid Emergency Voltage Control," in IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 14-25, Jan. 2022, doi: 10.1109/TPWRS.2021.3095179.
[21] O. Kaya, E. van der Roest, D. Vries and T. Keviczky, "Hierarchical Model Predictive Control for Energy Management of Power-to-X Systems," IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), The Hague, Netherlands, 2020, pp. 1094-1098, doi: 10.1109/ISGT-Europe47291.2020.9248892.
[22] S. Mirjalili, S. M. Mirjalili and A. Lewis, "Grey wolf optimizer," Advances in engineering software , vol. 69, pp. 46-61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.
[23] A. Kasaeian, P. Rahdan, M.A. Vaziri-Rad and W.M. Yan, “Optimal design and technical analysis of a grid-connected hybrid photovoltaic/diesel/biogas under different economic conditions: A case study,” Energy Conversion and Management, vol. 198, p. 111810, 2019, doi: 10.1016/j.enconman.2019.111810.
[24] S. Z. Tajalli, S. A. Mohammad Tajalli, A. Kavousi-Fard, T. Niknam, M. Dabbaghjamanesh and S. Mehraeen, "A Secure Distributed Cloud-Fog Based Framework for Economic Operation of Microgrids," IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2019, pp. 1-6, doi: 10.1109/TPEC.2019.8662201.
[25] M. A. Heidari, M. Nafar and T. Niknam, "Particle Swarm Optimization Based Sliding Mode Controller for Performance Improvement of Unified Power Quality Controllers Inverters," Journal of Southern Communication Engineering, vol. 12 , no. 46, pp. 59-76, 2022, doi: 10.30495/jce.2022.1961181.1162 (in persian).
[26] M. Khadem and M. Najafi, " Demand Planning and Transmission Network Development in the Capacity Market Using Microgrids," Journal of Southern Communication Engineering, vol. 11 , no. 41, pp. 43-57, 2021 (in persian).
[27] S. Naseri, M. Najafi and M. Esmaeilbeig, " Economic Dispatch Problem for Minimizing Cost and mproving Reliability Consifering Uncertainty," Journal of Southern Communication Engineering, vol. 11 , no. 41, pp. 77-91, 2021 (in persian).