پیش بینی قیمت منابع در شبکه ابری با پیشنهاد ساختار جدیدی در یادگیری عمیق با در نظر گرفتن سطح کیفیت خدمات
الموضوعات :سید سروش نظام دوست 1 , محمد علی پورمینا 2 , فربد رزازی 3
1 - دانشجو دکتری مهندسی برق، دانشکده برق و کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشکده برق و کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشکده برق و کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: پیشبینی قيمت نقطهای, رايانش ابري, شبكه عصبي عميق, GRU اصلاح شده(MGRU),
ملخص المقالة :
رایانش ابری یک مدل محاسباتی است که برای ارائه منابع به کاربران از سه الگوی برحسب تقاضا، رزرو شده و نقطهای بهره میبرد. قیمت نمونههای نقطهای به طور متوسط کمتر از سایر الگوها بوده و بر اساس عرضه و تقاضا دارای نوسان است. هنگامی که کاربر یک نمونه نقطهای را درخواست کند، باید پیشنهادی ارائه دهد. تنها در صورتی که قیمت پیشنهادی کاربر بالاتر از قیمت نقطهای باشد، کاربر میتواند از این نوع منابع استفاده کند. لذا پیشبینی قیمت نمونههای نقطهای بسیار مهم و چالشبرانگیز است. پیشبینی اینگونه سریهای زمانی پویا که از مدل غیرخطی پیروی میکنند، نیازمند ابزار هوشمندي مانند شبکههای عصبی است تا بتواند با مشاهده مقادیری از یک سری زمانی، مقادیر آتی را با کمترین خطا پیشبینی کنند. بنابراین قابلیت اطمینان و در نتیجه کیفیت سرویس ارتقاء مییابد. بدین منظور، ما آمازون EC2 را به عنوان یک بستر آزمايشي در نظر گرفتیم و از تاریخچه قیمت نقطهای برای پیشبینی قیمت آینده با ساخت مدلی نوین مبتنی بر یادگیری عمیق استفاده کردیم. نتایج به دست آمده نشان داد که مدل ارائه شده مقاله بر پايه ساختار پيشنهادي MGRU (GRU اصلاح شده) به خوبی میتواند پیشبینی مقادیر غیرخطی را انجام دهد و عملکرد بهتری نسبت به سایر روشهای مورد استفاده در این حوزه داشته باشد.
Examining deep learning structures for predicting time series
Providing an efficient and powerful algorithm to analyze the historical developments of Amazon EC2 spot prices and predict the future price of resources.
Presenting a proposed architecture based on modified GRU (MGRU(
Forecasting price trends in the future with the aim of improving the quality of services
Accurate prediction of real-world time series with highly volatile data
[1] L. Teylo, L. Arantes, P. Sens and L. Drummond, “A dynamic task scheduler tolerant to multiple hibernations in cloud environments,” Cluster Computing, vol. 24, no. 2, pp. 1051-1073, 2021, doi: 10.1007/s10586-020-03175-2
[2] J.P.A. Neto, D.M. Pianto and C.G. Ralha, “A prediction approach to define checkpoint intervals in spot instances,” 11th International Conference on Cloud Computing (CLOUD SCF). Springer, vol. 10967, 2018, pp 84–93, doi: 10.1007/978-3-319-94295-7_6.
[3] J. Lancon, J. Kunwar, D. Stroud, M. McGee and R. Slater, “AWS EC2 instance spot price forecasting using LSTM networks,” SMU Data Science Review, vol. 2, no. 2, 2019.
[4] V. K. Singh and K. Dutta, “Dynamic Price Prediction for Amazon Spot Instances,” 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 2015, pp. 1513-1520, doi: 10.1109/HICSS.2015.184.
[5] P. Varshney and Y. Simmhan, “AutoBoT: Resilient and Cost-Effective Scheduling of a Bag of Tasks on Spot VMs,” in IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 7, pp. 1512-1527, July 2019, doi: 10.1109/TPDS.2018.2889851.
[6] M. Khashei and M. Bijari, “A novel hybridization of artificial neural networks and ARIMA models for time series forecasting,” Applied Soft Computing, vol. 11, no. 2, pp. 2664-2675, 2011, doi: 10.1016/j.asoc.2010.10.015.
[7] Y. Liu, Z. Wang and B. Zheng, “Application of Regularized GRU-LSTM Model in Stock Price Prediction,” IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 2019, pp. 1886-1890, doi: 10.1109/ICCC47050.2019.9064035.
[8] G. Dai, C. Ma and X. Xu, “Short-Term Traffic Flow Prediction Method for Urban Road Sections Based on Space–Time Analysis and GRU,” in IEEE Access, vol. 7, pp. 143025-143035, 2019, doi: 10.1109/ACCESS.2019.2941280.
[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones and A. Gomez, “Attention is all you need,” 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, pp 5998–6008, 2017.
[10] V. K. Singh and K. Dutta, “Dynamic Price Prediction for Amazon Spot Instances,” 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 2015, pp. 1513-1520, doi: 10.1109/HICSS.2015.184.
[11] J.L. Lucas‐Simarro, R. Moreno‐Vozmediano, R.S. Montero and I.M. Llorente, “Cost optimization of virtual infrastructures in dynamic multi-cloud scenarios,” Concurr Comput Pract Exp, vol. 27, no. 9. pp. 2260–2277, doi: 10.1002/cpe.2972.
[12] V. Khandelwal, A.K. Chaturvedi and C. P. Gupta, “Amazon EC2 Spot Price Prediction Using Regression Random Forests,” in IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp. 59-72, Jan.-March 2020, doi: 10.1109/TCC.2017.2780159.
[13] S. Alkharif, K. Lee and H. Kim, “Time-series analysis for price prediction of opportunistic Cloud computing resources,” 7th International Conference on Emerging Databases. Springer, vol. 461, pp. 221–229, 2018, doi: 10.1007/978-981-10-6520-0_23.
[14] W. Liu, P. Wang, Y. Meng, C. Zhao and Z. Zhang, “Cloud spot instance price prediction using kNN regression,” Hum Cent Comput Inf Sci, no. 10, no. 1, pp.10–34, 2020, doi: 10.1186/s13673-020-00239-5.
[15] R. M. Wallace et al., “Applications of neural-based spot market prediction for cloud computing,” 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), Berlin, Germany, 2013, pp. 710-716, doi: 10.1109/IDAACS.2013.6663017.
[16] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu and Y. Zhang, “Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network,” in IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841-851, Jan. 2019, doi: 10.1109/TSG.2017.2753802.
[17] H. Al-Theiabat, M. Al-Ayyoub, M. Alsmirat and M. Aldwair, “A Deep Learning Approach for Amazon EC2 Spot Price Prediction,” IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), Aqaba, Jordan, 2018, pp. 1-5, doi: 10.1109/AICCSA.2018.8612783.
[18] A. Adebiyi, A. Adewumi and C. Ayo, “Comparison of ARIMA and artificial neural networks models for stock price prediction,” Journal of Applied Mathematics, vol. 1, pp. 1-7, 2014, doi: 10.1155/2014/614342.
[19] Y. Guo and W. Yao, “Applying gated recurrent units pproaches for workload prediction,” IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 2018, pp. 1-6, doi: 10.1109/NOMS.2018.8406290.
[20] D. Kong, S. Liu and L. Pan, “Amazon Spot Instance Price Prediction with GRU Network,” IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Dalian, China, 2021, pp. 31-36, doi: 10.1109/CSCWD49262.2021.9437881.
[21] B. Song, Y. Yu, Y. Zhou, Z. Wang and S. Du, “Host load prediction with long short-term memory in cloud computing,” The Journal of Supercomputing, vol. 74, no. 12, pp. 6554–6568, 2018, doi: 10.1007/s11227-017-2044-4.
[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput, vol. 9, no. 8, pp.1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.
[23] H. Abbasimehr and R. Paki, “Improving time series forecasting using LSTM and attention models,” J. Ambient Intell Human Comput, vol. 13, no. 1, pp. 673-691, 2022, doi: 10.1007/s12652-020-02761-x.
[24] K. Cho, B.V. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk and Y. Bengio, “Learning phrase representations using RNN encoder decoder for statistical machine translation,” arXiv , 2014, doi: 10.48550/arXiv.1406.1078.
[25] Z. Chen, J. Hu, G. Min, A. Y. Zomaya and T. El-Ghazawi, “Towards Accurate Prediction for High-Dimensional and Highly-Variable Cloud Workloads with Deep Learning,” in IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 4, pp. 923-934, April 2020, doi: 10.1109/TPDS.2019.2953745.
[26] T. Pham, T. Tran, D. Phung and S. Venkatesh, “Faster training of very deep networks via p-Norm gates,” in 23rd International Conference on Pattern Recognition (ICPR), 2016, pp. 3542-3547, doi: 10.1109/ICPR.2016.7900183.
[27] D.A. Monge, E. Pacini, C. Mateos and C.G. Garino, “ Meta-heuristic based autoscaling of cloud-based parameter sweep experiments with unreliable virtual machines instances,” Comput. Electr. Eng., vol. 69, pp. 364–377, 2019, doi: 10.1016/j.compeleceng.2017.12.007.