آنتن دو قطبی مغناطیسی-الکتریکی با خصیصه قطبش دایروی و الگوی تشعشعی یک جهته با هدف بهبود پهنای باند
الموضوعات :سید علی بنی هاشم 1 , پژمان محمدی 2 , یاشار زهفروش 3
1 - گروه برق، واحد ارومیه ، دانشگاه آزاد اسلامی ، ارومیه، ایران
2 - مرکز تحقیقات مایکروویو و آنتن، واحد ارومیه ،دانشگاه آزاد اسلامی، ارومیه، ایران
3 - مرکز تحقیقات مایکروویو و آنتن، واحد ارومیه ،دانشگاه آزاد اسلامی، ارومیه، ایران
الکلمات المفتاحية: دوقطبی الکتریکی, مغناطیسی, قطبش دایروی, آنتن,
ملخص المقالة :
در این مقاله ساختار جدید و فشرده ای از آنتن یک جهته که از یک دوقطبی الکتریکی صفحه ای و یک المان اتصال کوتاه شده تشکیل شده، معرفی میشود. این آنتن توسط یک خط تغذیه Γ شکل تحریک می گردد. پهنای باند امپدانسی عریضی در بازه فرکانسی 3/1 گیگاهرتز تا 3 گیگاهرتز در عملکرد خروجی این آنتن مشاهده میشود. الگوهای تشعشعی پایه دار با سطح گلبرگ اصلی بالا و سطح گلبرگ فرعی و پشتی کم از خصایص دیگر آنتن معرفی شده اند. فرایند طراحی آنتن به صورت پله به پله و پارامتریک بر مبنای مقادیر کلیدی هندسه آنتن صورت پذیرفته است. خصیصه اصلی آنتن مورد نظر، تحقق قطبش دایروی در درصد بالایی از پهنای باند کاربردی است. الگوهای تشعشعی صفحات متعامد E و H همراه با الگوهای قطبش دایروی چپگرد و راستگرد برای آنتن مورد نظر استخراج شده و مورد تحلیل قرار گرفته است. شباهت زیادی میان الگوی صفحه ایE و H وجود دارد که نشان دهنده دقت فرایند طراحی است. از سوی دیگر برای مطالعه حالت قطبش دایروی، نمودارهای چپگرد و راستگرد بر مبنای جهت بیم اصلی و سطح قطبش متعامد دارای عملکرد قابل قبولی هستند. بیشینه بهره کلی آنتن در باند فرکانس طراحی شده نزدیک 10 دسیبل است.
[1] P. Mohammadi, M. H. Rezvani and T. Siahy, “A circularly polarized wide-band magneto-electric dipole antenna with simple structure for BTS applications,” AEU - International Journal of Electronics and Communications, vol. 105, pp. 92-97, 2019, doi: 10.1016/j.aeue.2019.04.008.
[2] A. Baba, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation,” Electron. Lett., vol. 52, no. 4, pp. 266–268, 2019, doi: 10.1049/el.2015.2694.
[3] R. M. Hashmi, B. A. Zeb, and K. P. Esselle, “Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2970–2977, June 2021, doi: 10.1109/TAP.2021.2314534.
[4] R. M. Hashmi and K. P. Esselle, “A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 830–835, Feb. 2019, doi:10.1109/ACCESS.2019.2782749.
[5] N. Wang, J. Li, G. Wei, L. Talbi, Q. Zeng, and J. Xu, “Wideband fabry perot resonator antenna with two layers of dielectric superstrates,” IEEE Antennas and Wireless Propag. Lett., vol. 14, pp. 229–232, 2021, doi: 10.1109/LAWP.2021.2360703.
[6] Y. Ge, Z. Sun, Z. Chen, and Y. Y. Chen, “A high-gain wideband low-profile fabry-perot resonator antenna with a conical short horn,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1889–1892, 2021,doi:10.1109/APUSNCURSINRSM.2021.8072430.
[7] B. P. Chacko, G. Augustin, and T. A. Denidni, “FPC antennas : C-band point-to-point communication systems,” IEEE Antennas Propag. Mag.,vol. 58, no. 1, pp. 56–64, Feb. 2019, doi:10.1109/TMTT.2019.2830396.
[8] F. Wu and K. M. Luk, “Wideband high-gain open resonator antenna using a spherically modified, second-order cavity,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 2112–2116, April 2019, doi:10.1109/ACCESS.2019.2782749.
[9] A. Baba, R. M. Hashmi, and K. P. Esselle, “Achieving a large gain-bandwidth product from a compact antenna,” IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3437–3446, July 2019, doi:10.1109/ACCESS.2019.2953861.
[10] M. Kovaleva, D. Bulger, B. A. Zeb, and K. P. Esselle, “Cross-entropy method for electromagnetic optimization with constraints and mixed variables,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5532–5540, Oct. 2017. doi: 10.1109/TAP.2017.2740974.
[11] M. Khalily, R. Tafazolli, P. Xiao, and A. A. Kishk, “Broadband mm- wave microstrip array antenna with improved radiation characteristics for different 5G applications,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4641–4647, Sep. 2018, doi: 10.1109/TAP.2018.2845451.
[12] H. Xu, J. Zhou, K. Zhou, Q. Wu, Z. Yu, and W. Hong, “Planar wide- band circularly polarized cavity-backed stacked patch antenna array for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5170–5179, Oct. 2018, doi: 10.1109/TAP.2018.2862345.
[13] F. Wu and K. M. Luk, “Wideband high-gain open resonator antenna using a spherically modified, second-order cavity,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 2112–2116, April 2017, doi: 10.1109/ACCESS.2017.2782749.
[14] Y. Zhang, W. Hong, and R. Mittra, “45 GHz wideband circularly polarized planar antenna array using inclined slots in modified short-circuited SIW,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1669–1680,Mar. 2019, doi:10.1155/2021/9955502.
[15] L. Zhang et al., “Wideband high-efficiency circularly polarized SIW-fed S-dipole array for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 2422–2427, Mar. 2020, doi:10.1109/LAWP.2021.3092139.
[16] J. Xu, W. Hong, Z. H. Jiang, H. Zhang, and K. Wu, “Low-profile wide- band vertically folded slotted circular patch array for K a-band applica- tions,” IEEE Trans. Antennas Propag., vol. 68, no. 9, pp. 6844–6849, Sep. 2020, doi: 10.1109/ACCESS.2021.3075495.
[17] S. Sedghi, , S. Shafei, A. Kalami and T. Aribi, “Small Monopole Antenna for IEEE 802.11a and X-Bands Applications Using Modified CBP Structure,” Wireless Pers Commun ,vol.80, pp.859–865 , 2015, doi: 10.1007/s11277-014-2045-z.
[18] T. Li and Z. N. Chen, “Wideband sidelobe-level reduced K a-band meta surface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1356–1365, Mar. 2020, doi: 10.1109/TAP.2019.2948492.
[19] J. Yin, Q. Wu, C. Yu, H. Wang, and W. Hong, “Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter- wave applications,” IEEE Trans. Antennas Propag., vol. 67, no. 7,pp. 4474–4483, Jul. 2019, doi: 10.1002/ett.4426.
[20] F. Heidari, Z. Adelpoure and N. Parhizgar, “Simulation of Leaky Wave Antenna with Cosecant Squared Pattern Using Genetic Algorithm,” Journal communication Engineering, vol.11, no. 42, pp. 69-76, 2022 (in persian).
[21] G.-H. Sun and H. Wong, “A planar millimeter-wave antenna array with a pillbox-distributed network,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3664–3672, May 2020, doi: 10.1155/2021/2286011.
[22] T.aribi, T.Sedghi and R. K. Mohammad Lou, “Multi-band compact MIMO Antenna for new generations of mobile applications & IoT,” Journal of Communication Engineering, vol.12, no.45, pp. 20-27,2022(in persian).
[23] D.L. Wen, D. Z. Zheng and Q.X. Chu, “A wideband differentially fed dual-polarized antenna with stable radiation pattern forbase stations,”IEEE Trans Antennas Propag, vol.65, pp.2248-2255, 2017, doi:10.21203/rs.3.rs-327641/v1.
[24] D. Ni, S .Yang, Y. Chen and Z. Song, “Extremely low-profile wideband dual-polarized microstrip antenna for micro-base-station applications,” Int J RF Microw C E. , vol.27, pp.1-8, 2017,doi: 10.1109/TAP.2017.888398.
[25] M. Rezvani and P. Mohammadi, “A dual-polarized reflector antenna with λ/2 printed dipoles for femtocell applications,” J Instrum, vol.14, p.02004, 2019, doi: 10.21203/rs.3.rs-268254/v1.
_||_
[1] P. Mohammadi, M. H. Rezvani and T. Siahy, “A circularly polarized wide-band magneto-electric dipole antenna with simple structure for BTS applications,” AEU - International Journal of Electronics and Communications, vol. 105, pp. 92-97, 2019, doi: 10.1016/j.aeue.2019.04.008.
[2] A. Baba, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation,” Electron. Lett., vol. 52, no. 4, pp. 266–268, 2019, doi: 10.1049/el.2015.2694.
[3] R. M. Hashmi, B. A. Zeb, and K. P. Esselle, “Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2970–2977, June 2021, doi: 10.1109/TAP.2021.2314534.
[4] R. M. Hashmi and K. P. Esselle, “A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 830–835, Feb. 2019, doi:10.1109/ACCESS.2019.2782749.
[5] N. Wang, J. Li, G. Wei, L. Talbi, Q. Zeng, and J. Xu, “Wideband fabry perot resonator antenna with two layers of dielectric superstrates,” IEEE Antennas and Wireless Propag. Lett., vol. 14, pp. 229–232, 2021, doi: 10.1109/LAWP.2021.2360703.
[6] Y. Ge, Z. Sun, Z. Chen, and Y. Y. Chen, “A high-gain wideband low-profile fabry-perot resonator antenna with a conical short horn,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1889–1892, 2021,doi:10.1109/APUSNCURSINRSM.2021.8072430.
[7] B. P. Chacko, G. Augustin, and T. A. Denidni, “FPC antennas : C-band point-to-point communication systems,” IEEE Antennas Propag. Mag.,vol. 58, no. 1, pp. 56–64, Feb. 2019, doi:10.1109/TMTT.2019.2830396.
[8] F. Wu and K. M. Luk, “Wideband high-gain open resonator antenna using a spherically modified, second-order cavity,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 2112–2116, April 2019, doi:10.1109/ACCESS.2019.2782749.
[9] A. Baba, R. M. Hashmi, and K. P. Esselle, “Achieving a large gain-bandwidth product from a compact antenna,” IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3437–3446, July 2019, doi:10.1109/ACCESS.2019.2953861.
[10] M. Kovaleva, D. Bulger, B. A. Zeb, and K. P. Esselle, “Cross-entropy method for electromagnetic optimization with constraints and mixed variables,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5532–5540, Oct. 2017. doi: 10.1109/TAP.2017.2740974.
[11] M. Khalily, R. Tafazolli, P. Xiao, and A. A. Kishk, “Broadband mm- wave microstrip array antenna with improved radiation characteristics for different 5G applications,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4641–4647, Sep. 2018, doi: 10.1109/TAP.2018.2845451.
[12] H. Xu, J. Zhou, K. Zhou, Q. Wu, Z. Yu, and W. Hong, “Planar wide- band circularly polarized cavity-backed stacked patch antenna array for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5170–5179, Oct. 2018, doi: 10.1109/TAP.2018.2862345.
[13] F. Wu and K. M. Luk, “Wideband high-gain open resonator antenna using a spherically modified, second-order cavity,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 2112–2116, April 2017, doi: 10.1109/ACCESS.2017.2782749.
[14] Y. Zhang, W. Hong, and R. Mittra, “45 GHz wideband circularly polarized planar antenna array using inclined slots in modified short-circuited SIW,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1669–1680,Mar. 2019, doi:10.1155/2021/9955502.
[15] L. Zhang et al., “Wideband high-efficiency circularly polarized SIW-fed S-dipole array for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 2422–2427, Mar. 2020, doi:10.1109/LAWP.2021.3092139.
[16] J. Xu, W. Hong, Z. H. Jiang, H. Zhang, and K. Wu, “Low-profile wide- band vertically folded slotted circular patch array for K a-band applica- tions,” IEEE Trans. Antennas Propag., vol. 68, no. 9, pp. 6844–6849, Sep. 2020, doi: 10.1109/ACCESS.2021.3075495.
[17] S. Sedghi, , S. Shafei, A. Kalami and T. Aribi, “Small Monopole Antenna for IEEE 802.11a and X-Bands Applications Using Modified CBP Structure,” Wireless Pers Commun ,vol.80, pp.859–865 , 2015, doi: 10.1007/s11277-014-2045-z.
[18] T. Li and Z. N. Chen, “Wideband sidelobe-level reduced K a-band meta surface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1356–1365, Mar. 2020, doi: 10.1109/TAP.2019.2948492.
[19] J. Yin, Q. Wu, C. Yu, H. Wang, and W. Hong, “Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter- wave applications,” IEEE Trans. Antennas Propag., vol. 67, no. 7,pp. 4474–4483, Jul. 2019, doi: 10.1002/ett.4426.
[20] F. Heidari, Z. Adelpoure and N. Parhizgar, “Simulation of Leaky Wave Antenna with Cosecant Squared Pattern Using Genetic Algorithm,” Journal communication Engineering, vol.11, no. 42, pp. 69-76, 2022 (in persian).
[21] G.-H. Sun and H. Wong, “A planar millimeter-wave antenna array with a pillbox-distributed network,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3664–3672, May 2020, doi: 10.1155/2021/2286011.
[22] T.aribi, T.Sedghi and R. K. Mohammad Lou, “Multi-band compact MIMO Antenna for new generations of mobile applications & IoT,” Journal of Communication Engineering, vol.12, no.45, pp. 20-27,2022(in persian).
[23] D.L. Wen, D. Z. Zheng and Q.X. Chu, “A wideband differentially fed dual-polarized antenna with stable radiation pattern forbase stations,”IEEE Trans Antennas Propag, vol.65, pp.2248-2255, 2017, doi:10.21203/rs.3.rs-327641/v1.
[24] D. Ni, S .Yang, Y. Chen and Z. Song, “Extremely low-profile wideband dual-polarized microstrip antenna for micro-base-station applications,” Int J RF Microw C E. , vol.27, pp.1-8, 2017,doi: 10.1109/TAP.2017.888398.
[25] M. Rezvani and P. Mohammadi, “A dual-polarized reflector antenna with λ/2 printed dipoles for femtocell applications,” J Instrum, vol.14, p.02004, 2019, doi: 10.21203/rs.3.rs-268254/v1.