طراحی و شبیه سازی سوئیچ 1*4 پلاسمونیکی مبتنی بر نوارهای گرافنی و با قابلیت کنترل توسط ولتاژ
الموضوعات :توحید کلانتری 1 , مهدی زواری 2
1 - دانشجوی کارشناسی ارشد مهندسی برق، گروه مهندسی برق، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
2 - دانشیار الکترونیک، گروه مهندسی برق، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
الکلمات المفتاحية: سوئیچ نوری, کنترل پذیر, گرافن, پلاسمونیک,
ملخص المقالة :
در این مقاله، یک سوئیچ نوری گرافنی پلاسمونیک با ویژگیهای بهینه تر و تعداد چهار کانال طراحی و شبیه سازی گردیده است. هر یک از این کانالها دارای عرض یکسانی به اندازه 20 نانومتر هستند که در فاصله 30 نانومتری از هم قرار گرفته اند. عمل سوئیچینگ با اعمال ولتاژ به بخشی از کانالهای خروجی قابل کنترل و تنظیم می باشد و می توان توسط ولتاژ کانال خروجی را تعیین نمود. از ویژگیهای عملکرد این سوئیچ نوری دستیابی به میزان گذردهی نسبتا بالا با میزان تلفات بسیار کم در محدوده فرکانسی 30 تراهرتز می باشد. همچنین در این ساختار میزان همشنوایی به صورت محسوسی بسیار کم می باشد. این ساختار در پتانسیلهای شیمیایی متفاوتی بررسی شده که یکی از بهترین حالات آن در پتانسیل شیمیایی 0.4 اتفاق افتاده است. ساختار ساده و کنترل پذیری آسان از مزایای این ساختار می باشد. تمامی تجزیه و تحلیلها و همچنین شبیه سازیهای مربوطه در نرم افزارهای Lumerical و MATLAB انجام پذیرفته اند.
[1] W. Park, "Optical interactions in plasmonic nanostructures," Nano Converg., vol. 1, no.2, pp. 1-27, 2013, doi:10.1186/s40580-014-0002-x.
[2] R. G. H. Aryanfard, "Nanoscale plasmonic filter based on coupled metal-insulator-metal waveguides using nonlinear nanoslot resonator," J. Nanophoton., vol. 9, no.1, pp. 093799-1-093799-7, 2015, doi:10.1117/1.JNP.9.093799.
[3] Y. G. X. Zeng, H. Hu, D. Ji, Q. Gan, F. Bartoli, "A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing," J. Appl. Phys., vol. 113, no.13, p. 133102, 2013, doi:10.1063/1.4798942.
[4] J. Y. H. Wang, J. Zhang, J. Huang, W. Wu, D. Chen, G. Xiao, "Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure," Opt. Lett., vol. 41,no.6, pp. 1233-1236, 2016, doi:10.1364/OL.41.001233.
[5] K. L. Y. Gong, J. Huang, N. J. Copner, A. Davies, L. Wang, T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, vol. 124, pp. 511-525, 2012, doi:10.2528/PIER11121903.
[6] V. A. D. Abergel, J. Berashevich, K. Ziegler, T. Chakraborty "Properties of graphene: a theoretical perspective," Advances in Physics, vol. 59, no.4, pp. 261-482, 2010, doi:10.1080/00018732.2010.487978.
[7] A. K. P. Karimi Khozani, "Analytic calculation of dispersion curve in graphene-based one dimensional periodic structures," J. Appl. Electromag., vol. 4, pp. 39-46, 2015 (In Persian).
[8] F. Abajo, "Graphene Plasmonics: Challenges and Opportunities," ACS Photonics, vol. 1, no.3, pp. 135-152, 2014, doi:10.1021/ph400147y.
[9] P. A. T. Low, "Graphene Plasmonics for Terahertz to Mid-Infrared Applications," ACS Nano, vol. 8, no.2, pp. 1086-1101, 2014, doi:10.1021/nn406627u.
[10] N. E. A. Davoyan, "Electrically controlled one-way photon flow in plasmonic nanostructures," Nature Communications, vol. 5,no.5250, 2014, doi:10.1038/ncomms6250.
[11] J. P.-C. J. S. Gómez-Díaz, "Graphene-based plasmonic switches at near infrared frequencies," Opt. Express, vol. 21, no.13, pp. 15490-15504, 2013, doi:10.1364/OE.21.015490.
[12] C. H. G. C. Hong-Son, "Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays," Appl. Phys. Lett., vol. 102, no.23, 2013, doi:10.1063/1.4810003.
[13] R. S. R. Emadi, A. Zeidaabadi Nezhad, R. Emadi, "Analysis and design of graphene-based surface plasmon waveguide switch at long-wavelength infrared frequencies," IEEE Sel. Top. Quant. Electron., vol. 23, no.5, pp. 1-9, 2017, doi:10.1109/JSTQE.2017.2660881.
[14] X. P. X. Bana, X. Li, B. Hu, Y. Guo, H. Zheng, "A nonlinear plasmonic waveguide based all-optical bidirectional switching," Opt. Commun., vol. 406, pp. 124-127, 2018,doi:10.1016/j.optcom.2017.06.040.
[15] M. R. E. A. Ebrahimzadeh, "Analysis of Wall Structure Effects on Indoor Wireless Channel Parameters Using the FDTD Method," J. Appl. Electromag., vol. 4, pp. 27-35, 2016 (In Persian).
[16] A. M. J. Shiri, "EIT-Based Graphene Nanostructure Detectors for Detecting Materials Using Terahertz Waves," J. Appl. Electromag., vol. 6, pp. 41-48, 2018 (In Persian).
[17] M. K. M.-F. M. Yarahmadi, Leila Yousefi, "Subwavelength graphene-based plasmonic THz switches and logic gates," IEEE Trans. Terahertz Sci. Tech., vol. 5, no.5, pp. 725-731, 2015, doi: 10.1109/TTHZ.2015.2459674.
[18] M. K. M.-F. M. Yarahmadi, L. Yousefi, "Compact low power graphene-based Y-branch THz switch," Third Conference on Millimeter-Wave and Terahertz Technologies (MMWATT), 2014, pp. 1-3, doi: 10.1109/MMWaTT.2014.7057191.
[19] H. A.-B. M. Taleb Hesami, M. Zavvari, "A high efficiency optical power splitter in a y-branch photonic crystal for DWDM optical communication systems," Frequenz, vol. 72, no.1-2, pp. 79-84, 2017, doi:10.1515/freq-2016-0265.
[20] M. Derakhshi, D. Fath, "Terahertz plasmonic switch based on periodic array ofgraphene/silicon," Scientia Iranica F, Vol. 24, no.6, pp.3452-3457, 2017, doi:10.24200/SCI.2017.4423.
[21] H.-J. Li, L.-L. Wang, Z.-R. Huang, B. Sun, and X. Zhai, "Tunable mid-infrared plasmonic anti-symmetric coupling resonator based on the parallel interlaced graphene pair," Plasmonics, vol. 10, pp. 39-44, 2015,doi:10.1007/s11468-014-9774-4
_||_[1] W. Park, "Optical interactions in plasmonic nanostructures," Nano Converg., vol. 1, no.2, pp. 1-27, 2013, doi:10.1186/s40580-014-0002-x.
[2] R. G. H. Aryanfard, "Nanoscale plasmonic filter based on coupled metal-insulator-metal waveguides using nonlinear nanoslot resonator," J. Nanophoton., vol. 9, no.1, pp. 093799-1-093799-7, 2015, doi:10.1117/1.JNP.9.093799.
[3] Y. G. X. Zeng, H. Hu, D. Ji, Q. Gan, F. Bartoli, "A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing," J. Appl. Phys., vol. 113, no.13, p. 133102, 2013, doi:10.1063/1.4798942.
[4] J. Y. H. Wang, J. Zhang, J. Huang, W. Wu, D. Chen, G. Xiao, "Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure," Opt. Lett., vol. 41,no.6, pp. 1233-1236, 2016, doi:10.1364/OL.41.001233.
[5] K. L. Y. Gong, J. Huang, N. J. Copner, A. Davies, L. Wang, T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, vol. 124, pp. 511-525, 2012, doi:10.2528/PIER11121903.
[6] V. A. D. Abergel, J. Berashevich, K. Ziegler, T. Chakraborty "Properties of graphene: a theoretical perspective," Advances in Physics, vol. 59, no.4, pp. 261-482, 2010, doi:10.1080/00018732.2010.487978.
[7] A. K. P. Karimi Khozani, "Analytic calculation of dispersion curve in graphene-based one dimensional periodic structures," J. Appl. Electromag., vol. 4, pp. 39-46, 2015 (In Persian).
[8] F. Abajo, "Graphene Plasmonics: Challenges and Opportunities," ACS Photonics, vol. 1, no.3, pp. 135-152, 2014, doi:10.1021/ph400147y.
[9] P. A. T. Low, "Graphene Plasmonics for Terahertz to Mid-Infrared Applications," ACS Nano, vol. 8, no.2, pp. 1086-1101, 2014, doi:10.1021/nn406627u.
[10] N. E. A. Davoyan, "Electrically controlled one-way photon flow in plasmonic nanostructures," Nature Communications, vol. 5,no.5250, 2014, doi:10.1038/ncomms6250.
[11] J. P.-C. J. S. Gómez-Díaz, "Graphene-based plasmonic switches at near infrared frequencies," Opt. Express, vol. 21, no.13, pp. 15490-15504, 2013, doi:10.1364/OE.21.015490.
[12] C. H. G. C. Hong-Son, "Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays," Appl. Phys. Lett., vol. 102, no.23, 2013, doi:10.1063/1.4810003.
[13] R. S. R. Emadi, A. Zeidaabadi Nezhad, R. Emadi, "Analysis and design of graphene-based surface plasmon waveguide switch at long-wavelength infrared frequencies," IEEE Sel. Top. Quant. Electron., vol. 23, no.5, pp. 1-9, 2017, doi:10.1109/JSTQE.2017.2660881.
[14] X. P. X. Bana, X. Li, B. Hu, Y. Guo, H. Zheng, "A nonlinear plasmonic waveguide based all-optical bidirectional switching," Opt. Commun., vol. 406, pp. 124-127, 2018,doi:10.1016/j.optcom.2017.06.040.
[15] M. R. E. A. Ebrahimzadeh, "Analysis of Wall Structure Effects on Indoor Wireless Channel Parameters Using the FDTD Method," J. Appl. Electromag., vol. 4, pp. 27-35, 2016 (In Persian).
[16] A. M. J. Shiri, "EIT-Based Graphene Nanostructure Detectors for Detecting Materials Using Terahertz Waves," J. Appl. Electromag., vol. 6, pp. 41-48, 2018 (In Persian).
[17] M. K. M.-F. M. Yarahmadi, Leila Yousefi, "Subwavelength graphene-based plasmonic THz switches and logic gates," IEEE Trans. Terahertz Sci. Tech., vol. 5, no.5, pp. 725-731, 2015, doi: 10.1109/TTHZ.2015.2459674.
[18] M. K. M.-F. M. Yarahmadi, L. Yousefi, "Compact low power graphene-based Y-branch THz switch," Third Conference on Millimeter-Wave and Terahertz Technologies (MMWATT), 2014, pp. 1-3, doi: 10.1109/MMWaTT.2014.7057191.
[19] H. A.-B. M. Taleb Hesami, M. Zavvari, "A high efficiency optical power splitter in a y-branch photonic crystal for DWDM optical communication systems," Frequenz, vol. 72, no.1-2, pp. 79-84, 2017, doi:10.1515/freq-2016-0265.
[20] M. Derakhshi, D. Fath, "Terahertz plasmonic switch based on periodic array ofgraphene/silicon," Scientia Iranica F, Vol. 24, no.6, pp.3452-3457, 2017, doi:10.24200/SCI.2017.4423.
[21] H.-J. Li, L.-L. Wang, Z.-R. Huang, B. Sun, and X. Zhai, "Tunable mid-infrared plasmonic anti-symmetric coupling resonator based on the parallel interlaced graphene pair," Plasmonics, vol. 10, pp. 39-44, 2015,doi:10.1007/s11468-014-9774-4