Evaluating the thermal comfort of humans by RayMan model in Lake Urmia Basin, Iran
الموضوعات :Khadijeh Javan 1 , Farhad Nasiri 2
1 - Dept. of Geography, Urmia University, Urmia, Iran
2 - West Azarbayjan Regional Water Authority, Urmia, Iran
الکلمات المفتاحية:
ملخص المقالة :
Tourism is one of the largest economic sectors globally. It is a climate sensitive sector, with climate being one of the most important attributes for a destination. In order to know that a region's climate what extent is suitable to the given tourism activities, the tourism climate potential must be determined. This study aims to illustrate observed the tourism climate potential of Lake Urmia Basin during 1988-2012, by using physiologically equivalent temperature (PET), the predicted mean vote (PMV) and standard effective temperature (SET). The RayMan model was used to calculate the indices PET, PMV and SET. The analysis is based on the monthly measured datasets of 8 synoptic stations. Results demonstrate that according to PET and PMV, July and August are the best months for tourists in terms of thermal comfort in Lake Urmia Basin. Also, June and September have Slight cold stress and provide acceptable conditions for tourists. In SET, the thermal perceptions in no month are comfortable. But July and August have Slight cold stress and provide acceptable conditions for tourists.
Alexandri, E., & Jones, P. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment, 43(4), 480-493.
Ali-Toudert, F., & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and environment, 41(2), 94-108.
Ashrae, A. H. F., & Book, D. (1997). American Society of Heating. Refrigeration and Air Conditioning Engineers.
Beiding, H. S., & Hatch, T. F. (1955). Index for evaluating heat stress in terms of resulting physiological strains. Heating, Piping and Air Conditioning, 27, 129-36.
Blazejczyk, K., Holmér, I., & Nilsson, H. (1998). Absorption of solar radiation by an ellipsoid sensor simulated the human body. Applied Human Science, 17(6), 267-273.
Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., & Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International journal of biometeorology, 56(3), 515-535.
Bouyer, J., Vinet, J., Delpech, P., & Carré, S. (2007). Thermal comfort assessment in semi-outdoor environments: application to comfort study in stadia. Journal of Wind Engineering and Industrial Aerodynamics, 95(9), 963-976.
Chen, H., Ooka, R., Harayama, K., Kato, S., & Li, X. (2004). Study on outdoor thermal environment of apartment block in Shenzhen, China with coupled simulation of convection, radiation and conduction. Energy and Buildings, 36(12), 1247-1258.
de Freitas, C. R. (2003). Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. international Journal of Biometeorology, 48(1), 45-54.
de Freitas, C. R., Scott, D., & McBoyle, G. (2008). A second generation climate index for tourism (CIT): specification and verification. International Journal of Biometeorology, 52(5), 399-407.
Delju, A. H., Ceylan, A., Piguet, E., &Rebetez, M. (2013). Observed climate variability and change in Urmia Lake Basin, Iran. Theoretical and applied climatology, 111(1-2), 285-296.
Fänger, P. O. (1972). Thermal comfort: analysis and applications in environmental engineering. Mc. Graww Hill, New York.
Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.
Farajzadeh, H., & Matzarakis, A. (2009). Quantification of climate for tourism in the northwest of Iran. Meteorological Applications, 16(4), 545.
Fathian, F., Morid, S., &Kahya, E. (2015). Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theoretical and Applied Climatology, 119(3-4), 443-464.
Gagge, A. P. (1971). An effective temperature scale based on a simple model of human physiological regulatory response. Ashrae Trans., 77, 247-262.
Gagge, A. P., Fobelets, A. P., & Berglund, L. (1986). A standard predictive index of human response to the thermal environment. ASHRAE Trans.;(United States), 92(CONF-8606125-).
Gulyás, Á., Unger, J., & Matzarakis, A. (2006). Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Building and Environment, 41(12), 1713-1722.
Hamilton, J. M., & Lau, M. A. (2005). 13 The role of climate information in tourist destination choice decision making. Tourism and global environmental change: Ecological, economic, social and political interrelationships, 229.
Hodder, S. G., & Parsons, K. (2007). The effects of solar radiation on thermal comfort. International journal of biometeorology, 51(3), 233-250.
Holmér, I. (1984). Required clothing insulation (IREQ) as an analytical index of cold stress. ASHRAE transactions, 90(1B), 1116-1128.
Honjo, T. (2009). Thermal comfort in outdoor environment. Global environmental research, 13(2009), 43-47.
Höppe, P. R. (1993). Heat balance modelling. Experientia, 49(9), 741-746.
Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43(2), 71-75.
ISO, P. (2005). 7730 Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
Kántor, N., & Unger, J. (2010). Benefits and opportunities of adopting GIS in thermal comfort studies in resting places: an urban park as an example. Landscape and Urban Planning, 98(1), 36-46.
Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, 52(4), 281-290.
Lin, B., Li, X., Zhu, Y., & Qin, Y. (2008). Numerical simulation studies of the different vegetation patterns’ effects on outdoor pedestrian thermal comfort. Journal of Wind Engineering and Industrial Aerodynamics, 96(10), 1707-1718.
Lin, T. P. (2009). Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 44(10), 2017-2026.
Lin, T. P., & Matzarakis, A. (2011). Tourism climate information based on human thermal perception in Taiwan and Eastern China. Tourism Management, 32(3), 492-500.
Lin, T. P., de Dear, R., & Hwang, R. L. (2011). Effect of thermal adaptation on seasonal outdoor thermal comfort. International Journal of Climatology, 31(2), 302-312.
Lise, W., & Tol, R. S. (2002). Impact of climate on tourist demand. Climatic change, 55(4), 429-449.
Maddison, D. (2001). In search of warmer climates? The impact of climate change on flows of British tourists. Climatic change, 49(1-2), 193-208.
Martín, M. B. G. (2004). An evaluation of the tourist potential of the climate in Catalonia (Spain): a regional study. Geografiska Annaler. Series A. Physical Geography, 249-264.
Matzarakis, A., & Mayer, H. (1997). Heat stress in Greece. International Journal of Biometeorology, 41(1), 34-39.
Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76-84.
Matzarakis, A., De Freitas, C. R., & Scott, D. (2004). Advances in tourism climatology. Meteorologisches Institut der Universität.
Matzarakis, A. (2006). Weather-and climate-related information for tourism. Tourism and Hospitality Planning & Development, 3(2), 99-115.
Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments- application of the RayMan model. International Journal of Biometeorology, 51(4), 323-334.
Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments- application of the RayMan model. International Journal of Biometeorology, 51(4), 323-334.
Matzarakis, A., Rutz, F., & Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology, 54(2), 131-139.
Matzarakis, A. (2010). Climate change and adaptation at regional and local scale. Tourism and the implications of climate change: Issues and actions. Bingley: Emerald, 237-259.
Mayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and applied climatology, 38(1), 43-49.
Mazon, J. (2014). The influence of thermal discomfort on the attention index of teenagers: an experimental evaluation. International journal of biometeorology, 58(5), 717-724.
Mieczkowski, Z. (1985). The tourism climatic index: a method of evaluating world climates for tourism. The Canadian Geographer/Le Géographe canadien, 29(3), 220-233.
Moran, D. S., Shitzer, A., & Pandolf, K. B. (1998). A physiological strain index to evaluate heat stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 275(1), R129-R134.
Morgan, R., Gatell, E., Junyent, R., Micallef, A., Özhan, E., & Williams, A. T. (2000). An improved user-based beach climate index. Journal of Coastal Conservation, 6(1), 41-50.
Nastos, P. T., & Matzarakis, A. (2013). Human bioclimatic conditions, trends, and variability in the Athens University Campus, Greece. Advances in Meteorology, 2013.
Nikolopoulou, M., Baker, N., & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar energy, 70(3), 227-235.
Nikolopoulou, M., & Lykoudis, S. (2006). Thermal comfort in outdoor urban spaces: analysis across different European countries. Building and Environment, 41(11), 1455-1470.
Nikolopoulou, M., & Lykoudis, S. (2007). Use of outdoor spaces and microclimate in a Mediterranean urban area. Building and environment, 42(10), 3691-3707.
Ono, T., Murakami, S., Ooka, R., & Omori, T. (2008). Numerical and experimental study on convective heat transfer of the human body in the outdoor environment. Journal of Wind Engineering and Industrial Aerodynamics, 96(10), 1719-1732.
Parsons, K. (2014). Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance. Crc Press.
Pickup, J., & De Dear, R. (2000). An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. In Biometeorology and urban climatology at the turn of the millenium. Selected Papers from the Conference ICB-ICUC (Vol. 99, pp. 279-283).
Scott, D., & McBoyle, G. (2001, December). Using a ‘tourism climate index’to examine the implications of climate change for climate as a tourism resource. In Proceedings of the first international workshop on climate, tourism and recreation (pp. 69-88). Freiburg,, Germany: Commission on Climate, Tourism and Recreation, International Society of Biometeorology.
Steadman, R. G. (1984). A universal scale of apparent temperature. Journal of Climate and Applied Meteorology, 23(12), 1674-1687.
Svensson, M. K., Thorsson, S., & Lindqvist, S. (2003). A geographical information system model for creating bioclimatic maps–examples from a high, mid-latitude city. International Journal of Biometeorology, 47(2), 102-112.
Thorsson, S., Lindqvist, M., & Lindqvist, S. (2004). Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. International Journal of Biometeorology, 48(3), 149-156.
Thorsson, S., Honjo, T., Lindberg, F., Eliasson, I., & Lim, E. M. (2007). Thermal comfort and outdoor activity in Japanese urban public places. Environment and Behavior
VDI, V. (1998). 3787, Part I: Environmental Meteorology, Methods for the Human Biometeorological Evaluation of Climate and Air Quality for the Urban and Regional Planning at Regional Level. Part I: Climate. Part I: Climate. Beuth, Berlin.
World Tourism Organization (2014). http://unwto.org
Yaglou, C. P., & MINAED, D. (1957). Control of heat casualties at military training centers. Arch. Indust. Health, 16(4), 302-16.
Yahia, M. W., & Johansson, E. (2013). Evaluating the behaviour of different thermal indices by investigating various outdoor urban environments in the hot dry city of Damascus, Syria. International journal of biometeorology, 57(4), 615-630.