An Overview of Quasicrystals, Their Types, Preparation Methods, Properties
الموضوعات : Journal of Environmental Friendly MaterialsH Bakhtiari 1 , M. R Rahimipour 2 , M Farvizi 3 , M. R Khanzadeh 4
1 - Materials and Energy Research Center, Karaj,, Iran
2 - Materials and Energy Research Center, Karaj,, Iran
3 - Materials and Energy Research Center, Karaj,, Iran
4 - Center for Advanced Engineering Research, Majlesi Branch, Islamic Azad University, Isfahan, Iran
الکلمات المفتاحية:
ملخص المقالة :
Quasicrystals, unlike crystals that contain regular and repetitive patterns, are composed of regular patterns that are not repetitive. Moreover, the symmetry of quasicrystals in crystals is impossible. For example, ordinary crystals can have triple symmetries from the repetition of a triangle or quadruple symmetries from the repetition of a cube. Quasicrystals are a special type of real crystals that are artificially formed only in laboratories, under certain conditions and temperatures, and it is not possible to form them like the earth. Evidence suggests that quasicrystals can form naturally under conditions contrary to astrophysical laws and remain stable for long periods. Quasicrystals are a group of new materials with unique mechanical, physical, and chemical properties. Among the known properties of these materials are low adhesion and friction, high resistance to corrosion, very high hardness, electrical insulation at low temperatures, and light absorption. Quasicrystals are used in non-stick coatings, nanoparticles, hydrogen storage, reinforcing phases in composites, catalysts, thermal insulation, infrared light absorption, and corrosion protection. In this article, we refer to some of the main topics related to quasi-crystal
[1] J. A. Smerdon, K. M. Young, M. Lowe, S. S. Hars, T. P. Yadav, D. Hesp, V. R. Dhanak, A. P. Tsai, H. R. Sharma, and R. McGrath, Nano Letters, 14(2014), 1184.
[2] N. Kalashnyk, J. Ledieu, E. Gaudry, C. Cui, A. P. Tsai, and V. Fourn´ee, Nano Res, 11(2018), 2129.
[3] A. P. Tsai and C. Cui. In Handbook of Crystal Growth, (2015), 1113.
[4] L. Bindi, P. J. Steinhardt, N. Yao, and P. J. Lu, Am. Min., 96(2011), 928.
[5] J. Bohannon, Science, 315(2007), 1066.
[6] A. Inoue, and H. Kimura, Mater. Sci. Eng. A, 286 (2000), 1.
[7] S. Hall, T. Hahn, B. McMahon, U. Shmueli, and A. J. C. Wilson: International Tables for Crystallography, Definition, and Exchange of Crystallographic Data, Springer, Netherland, (2005).
[8] T. Hahn, U. Shmueli, A. J. C. Wilson, and E. Prince: International tables for crystallography, Springer, Netherland, 2(2005).
[9] C. Janot, Quasicrystals: A Primer, Oxford university press, New York, (1994).
[10] J. M. Dubois Useful quasicrystals: World Scientific, Singapore, (2005).
[11] M. Gogebakan, B. Avar, and O. Uzun, Mater Sci-Poland, 27(2009), 926.
[12] F. Samavat, M. H. Tavakoli, S. Habibi, B.Jaleh, P. Taravati Ahmad, OJPC, 2(2012), 7.
[13] D. M. Rampulla, C. M. Mancinelli, I. F. Brunell, A. J. Gellman, Langmuir, 21(2005) 4547.
[14] E. Huttunen Saarivirta, J. Alloy. Compd. 363(2004), 150.
[15] F. Kenneth Kelton, Intermetallic Compounds 1, John Wiley and Sons Ltd (1994) Chapter 20.
[16] T. Fujiwara, and Y. Ishii: Handbook of metal physics, Introduct. to Quasicrystals, Elsevier Sci., (2007).
[17] V. Tcherdyntsev, T. Sviridova, A. Shevchukov, and S. Kaloshkin, Journal of Physics, Conf. Series 144, (2009).
[18] C.J. Wang, K.K. Deng, K.B. Nie, S.J. Shang, and W. Liang, Mater. Sci. Eng. A, 656, 102 (2016).
[19] S. Scudino, J. Eckert, X. Yang, D. Sordelet, and L. Schultz, Intermetallics, 15(2007), 571.
[20] K. Kamiya, T. Takeuchi, N. Kabeya, N. Wada1, T. Ishimasa, A. Ochiai, K. Deguchi1, K. Imura1 and N. K. Sato, Nature Commun., (2018), 154.
[21] T.Yadav, MSEIJ, (2017), 1.
[22] T. Moskalewicza, B. Dubiela and B. Wendler, Mater Charact., 83(2013) 161.
[23] S. I. Ryabtsev, V. A. Polonskyy, O. V. Sukhova and M. V. Berun, J. Nano- Elect. Phys., 11(2019), 1.
[24] B. S. Phillips and J. S. Zabinski, Trib Lett, 15(2003), 57.
[25] K.Lee, J. Hsu, D. Naugle, H.Liang, Mater. Des, 108(2016), 440.
[26] R. Babilas, A. Bajorek, M. Spilka, A. Radon and Wo. Lonski, Mater. Int., (2020), 1.
[27] L. Ping, A. H. Stigenberg and J. O.Nilsson, Acta Metall. Mater., 43(1995), 2881.
[28] K. Nosaki, T. Masumoto, A. Inoue and T. Yamaguchi, Japanese Patent no. 26559193 (1993).
[29] V. K. Singh, M. Mihalkovic, M. Krajčí, S. Sarkar, Phys. Rev. Res 2, 8(2020).
[30] Ch. Qian, J. Wang, Phys. Chem., 22(2020), 74.