Preparation Electroanalysis Based on Sensor Nanosheets G-C3N4/CPE for Determination of Amount Hg2+ ion in Water Samples by Square Wave Anodic Stripping Voltammetry (SWASV) Method
الموضوعات :Shahnaz Davoudi 1 , Mohammad Reza Asghari Ganjeh 2
1 - Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
2 - Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
الکلمات المفتاحية:
ملخص المقالة :
This study describes the construction of a new electrochemical sensor and applies it for the determination of Hg2+ ion. This sensor was prepared using new nanographene on G-C3N4 nanosheets. Although the other methods (gas or liquid chromatographic, electrophoresis, flow injection) for measuring Hg2+ ion have advantages such as excellent accuracy and reproducibility, it has limitations such as long-time measure, high equipment cost. Here, we report the use of an electrochemical approach for analytical determination of Hg2+ ion that takes 120 s. The calibration curve was linear in the range of (0.03 to 33.0 nM). The current response was linearly proportional to the Hg2+ion concentration with a R2~ 0.999. We demonstrated a sensitivity a limit of detection of (0.093 nM). Finally, Sensor nanosheets G-C3N4/CPE has been successfully applied for the determination of Hg2+ ion in different kind of water samples. The method introduced to measure Hg2+ ion in real samples such as water samples was used and can be used for other samples.
[1]. L.R.P. Mandoc, I. Moldoveanu, R.I. Stefan-van Staden, E.M. Ungureanu, Microsystem.
Technol., 23(5), 1141 (2017).
[2]. S. Sobhanardakani, R. Zandipak, J. Clean. Techn. Environ. Policy., 19(7), 1913 (2017).
[3]. X. Guo, B. Du, Q. Wei, J. Yang, L. Yan, W. Xu, J. Hazar. Meter., 278, 211 (2014).
[4]. M. Ramalingam, V.K. Ponnusamy, J. Microchim. Acta., 186, 1 (2019).
[5]. Y. Zhang, L. Zhang, B. Han, P. Gao, Q. Wu, A. Zhang, Sensors & Actuators: B. Chemical., 272,
331 (2018).
[6]. B. Babamiri, A. Salimi, R. Hallaj, Biosens. Bioelectron., 102, 328 (2018).
[7] S. Prabu, S. Mohamad, J. Mol. Structure., (2020). Doi:Org/10.1016/j.molstruc. 2019.127528.
[8]. N. Bansal, J. Vaughan, A. Boullemant, J. Microchem., 113, 36 (2014).
[9]. Y. Tian, H.F. Wang, L.Q. Yan, X.F. Zhang, A. Falak, P.P. Chen, F.L. Dong, L.F. Sun, W.G.
Chu, Chinese. Physics. B., 27, 77406 (2018).
[10]. G. Jarzynska, J. Falandysz, J. Environ. Eng., 46(6), 569 (2011).
[11]. G. Wen, X. Wen, M.M.F. Choi, Sensors and Actuators B-Chemical, 221, 1449 (2015).
[12]. S.S. de Souza, A.D. Campiglia, F. Barbosa, J. Analytica. Chimica. Acta, 761, 11 (2013).
[13]. Z. De Liu, Y. F. Li, J. Ling, C. Z. Huang, Environ. Sci. Technol., 43(13), 5022 (2009).
[14]. Q. Zhao, Y. Chai, R. Yuan, J. Luo, Sens. Actuators B-Chem., 178, 379 (2013).
[15]. N. Zhou, H. Chen, J. Li, L. Chen, Microchimica Acta, 180, 493 (2013).
[16]. S. Davoudi, M.H. Givianrad, Russian Journal of Electrochemistry, 56, 506 (2020).
[17]. B. Chen, Z. Huang, X. Chen, Y. Zhao, Q. Xu, S. Chen, X. Xu, P. Long, Electrochim. Acta,
210, 905 (2016).
[18]. N. Nunez-Dallos, M.A. Macias, O. Garcia-Beltran, J.A. Calderon, E. Nagles, J. Electroanal.
Chem., 822, 95 (2018).
[19]. F. Bai, H. Huang, Y. Tan, Ch. Hou, P. Zhang, Electrochim. Acta, 176, 280 (2015).
[20]. H. Beitollahi, S.Z. Mohammadi, M. Safaei, S. Tajik, Anal. Methods., 12, 1547 (2020).
[21]. H. Bagheri, A. Shirzadmehr, M. Rezaei, H. Khoshsafar, Ionics., 24, 833 (2018).
[22]. T.D. Vu, P.K. Duy, H.T. Bui, S.H. Han, H. Chung, Sensors and Actuators Chemical. B., 281,
320 (2019).
[23]. H. Bagheri, A. Afkhami, H. Khoshsafar, Anal. Chim. Acta, 870, 56 (2015).
[24]. Y. Zhang, G.M. Zeng, L. Tang, J. Chen, Y. Zhu, Y. He, Anal. Chem., 87, 989 (2015).
[25]. H. Shafiekhani, F. Nezam, Sh. Bahar, J. Serb. Chem. Soc., 82(3), 317 (2017).
[26]. A. Hatamie, F. Marahel, A. Sharifat, Talanta, 176, 518 (2018).
[27]. X. Yu, Z. Liu, Y. Wang, H. Luo, X. Tang, New. J. Chem., 44, 15908 (2020).
[28]. M.H. Vu, C.C. Nguyen, T.O. Do, Chem. Photo. Chem., 5(5), 466 (2021).
[29]. J. Hong, J. Kim, R. Selvaraj, Y. Kim, Toxicol. Environ. Chem., 103(3), 18 (2021).
[30]. C. Prasad, H. Tang, I. Bahadur, J. Mol. Liqud., 281, 634 (2019).
[31]. N. Murugan, M.B. Chan-Park, A.K. Sundramoorthy, J. Electrochem. Soc. B., 166, 3163
(2019).
[32]. N. Tukimin, J. Abdullah, Y. Sulaiman, J. Electrochemical Soc., 165, B258 (2018).
[33]. S. Huang, S. Song, H. Yue, X. Gao, B. Wang, E. Guo, Sensors and Actuators B: Chem., 277,
381 (2018).
[34]. M.A. Karimi, V. H. Aghaei, A. Nezhadali, N. Ajami, Food. Anal. Methods, 11(10), 2907
(2018).
[35]. S. Siddiqui, A. Nafady, H.M. El-Sagher, S.I. Al-Saeedi, A.M. Alsalme, F.N. Talpur, S.T.H.
Sherazi, M.S. Kalhoro, M.R. Shah, S.T. Shaikh, M. Arain, S.K. Bhargava, J. Solid. State.
Electrochem., 23, 2073 (2019).
[36]. J. Penagos-Llanos, O. Garcia-Beltran, J.A. Calderon, J.J. Hurtado-Murillo, E.J. Nagles,
Electroanal. Chem., 852, 113517 (2019).
[37]. H. Rajabi, M. Noroozifar, M. Khorasani‐Motlagh, J. Anal. Bioanal. Electrochem., 8, 522
(2016).
[38]. H. Xie, Y. Niu, Y. Deng, H. Cheng, G. Li, W. Sun, J. Chin. Chem. Soc., 61, 1 (2020).
[39]. T. Rahmani, A. Hajian, A. Afkhami, H. Bagheri, New. J. Chem., 42(9), 7213 (2018).
[40]. S. Davoudi, M.H. Givianrad, M. Saber-Tehrani, P. Aberoomand Azar, Ind. J. Chem., 58, 1075
(2019).
[41]. S.S. Hassan Sirajuddin, A.R. Solangi, T.G. Kazi, M.S. Kalhoro, Y. Junejo, Z.A. Tagar, N.H.
Kalwar, J. Electroanal. Chem., 682, 77 (2012).
[42]. A.C. Lokhande, N.M. Shinde, A. Shelke, P.T. Babar, J.H. Kim, J. Solid. State. Electrochem.,
21(9), 2747 (2017).
[43]. L. Laffont, T. Hezard, P. Gros, L.E. Heimbürger, J.E. Sonke, P. Behra, D. Evrard, Talanta,
141, 26 (2015).
[44]. P.A. Kolozof, A.B. Florou, K. Spyrou, J. Hrbac, M.I. Prodromid, Sensor. Actuat. B-Chem.,
304, 127268 (2020).
[45]. K. Nagaraj, P. Senthil Murugan, S. Thangamuniyandi, Arabian Journal of Chemistry, 12(8),
1945 (2019).